
Indeterminacy and Imperfect Information∗

Thomas A. Lubik
Federal Reserve Bank of Richmond†

Christian Matthes
Federal Reserve Bank of Richmond‡

Elmar Mertens
Deutsche Bundesbank (as of Aug 2018) §

June 10, 2018

Abstract

We study equilibrium determination in an environment where two kinds of agents
have different information sets: The fully informed agents know the structure of the
model and observe histories of all exogenous and endogenous variables. The less in-
formed agents observe only a strict subset of the full information set. All types of
agents form expectations rationally, but agents with limited information need to solve
a dynamic signal extraction problem to gather information about the variables they
do not observe. We show that for parameters values that imply a unique equilibrium
under full information, the limited information rational expectations equilibrium can be
indeterminate. In a simple application of our framework to a monetary policy problem
we show that limited information on part of the central bank implies indeterminate
outcomes even when the Taylor Principle holds.

JEL Classification: C11; C32; E52
Keywords: Limited information; rational expectations;

Kalman filter; belief shocks

∗The views expressed in this paper are those of the authors and should not be interpreted as those of the
Federal Reserve Bank of Richmond, the Federal Reserve System or the Bank for International Settlements.
We wish to thank participants at the 2016 CEF Meetings in Bordeaux, the Federal Reserve Macro System
meeting in Cincinnati, the Fall 2016 NBER Dynamic Equilibrium model workshop, the Fall 2016 Midwest
Macro conference, and the 2018 ASSA meetings as well as our discussants Robert Tetlow, Leonardo Melosi
and Todd Walker for very useful comments.
†Research Department, P.O. Box 27622, Richmond, VA 23261. Tel.: +1-804-697-8246. Email:

thomas.lubik@rich.frb.org.
‡Research Department, P.O. Box 27622, Richmond, VA 23261. Tel.: +1-804-697-4490. Email: chris-

tian.matthes@rich.frb.org.
§Email: em@elmarmertens.com.

1



1 Introduction

[TO BE WRITTEN]

2 A Simple Analytical Example

2.1 Economic Framework

We consider a simple model of inflation determination. The model economy is described

by a Fisher equation that links the nominal interest rate it to the real rate rt via expected

inflation Etπt+1, and by a monetary policy rule that has the nominal rate respond to current

inflation πt, that is, a Taylor rule.1 We assume that the real rate is characterized by an

exogenous AR(1) process with a Gaussian innovation. The equation system is thus given

by:

it = rt + Etπt+1, (1)

it = φπt, (2)

rt = ρrt−1 + εt. (3)

The first equation is the Fisher equation, the second is the policy rule, while the third

equation describes the evolution of the real rate, where εt ∼ iid N (0, σ2ε) and |ρ| < 1. All

variables can be understood as deviations from their respective steady state values. φ is a

monetary policy parameter, where we assume throughout this paper that |φ| > 1.

We distinguish two agents in this economy: a representative private-sector agent whose

behavior is characterized by the Fisher equation (1), and a central bank whose behavior

is given by the monetary policy rule (2). We assume that the agents know the structure

of the economy including the structural parameters, and that they observe the history of

their respective information sets. Moreover, both agents form expectations rationally. The

1In the Appendix, we also consider a policy rule of the type: it = rt +φπt, with a time-varying intercept
given by the real rate of interest. The steps towards deriving a solution are very much identical to the ones
described in the main text.
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central assumption of our framework, however, is that the two agents have different, but

nested information sets.We describe the full information set St of all shocks through time

t, so that for some variable xt, Etxt+h = E
(
xt+h|St

)
, for all h, and Etxt = xt, where Et is

the rational expectations operator under full information. We define a limited information

set Zt which is nested in St, Zt ⊆ St. The projections of the less informed agent for any

variable xt are denoted xt|t = E
(
xt|Zt

)
and xt+h|t = E

(
xt+h|Zt

)
. Since Zt is spanned by St

we can apply the law of iterated expectations to obtain: E
(
E(xt+h|Zt)|St

)
= xt+h|t. Under

full information rational expectations (FIRE), both agents are assumed to know St. This

means that they observe all variables in the model without error, that they know the history

of all shocks, that they understand the structure of the economy and the solution concepts.

Under limited information rational expectations (LIRE), we assume that one agent has

access to the full information set St, while the other observes the limited information set

Zt only. For the purposes of this simple example, we assume that the private sector is fully

informed whereas the central bank has limited information.

2.2 Rational Expectations Equilibria

The equation system (1) - (3) forms a linear rational expectations model that can be solved

using standard methods under FIRE. When both agents have information set St we can

find a rational expectations equilibrium (REE) as follows. Substituting the policy rule into

the Fisher equation yields a relationship in inflation with driving process rt:

Etπt+1 = φπt + rt. (4)

The dynamic behavior of inflation depends on the value of the policy coefficient φ. It is well

known that the solution is unique if and only |φ| > 1, in which case the determinate REE

solution is πt = 1
φ−ρrt and it = φ

φ−ρrt. The properties of the exogenous process rt carry

over to inflation which is an autoregressive process.

The remainder of our paper focuses on the case when |φ| > 1. Since our aim is to
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establish determinacy conditions under LIRE we review the implications of equilibrium

indeterminacy when φ is inside the unit circle. In this case, the REE can be indeterminate in

the sense that there are possibly infinitely many solutions that are consistent with equation

(4). To describe the full set of solutions, we find it convenient to follow the approach

developed by Lubik and Schorfheide (2003), which extends the Sims (2000) solution method

to the case of indeterminacy. In order to find a solution to (4) we define the rational

expectations forecast error ηt = πt − Et−1πt, whereby Et−1ηt = 0 by construction. This

allows us to substitute out inflation expectations Etπt+1 so that we can write:

πt = φπt−1 + rt−1 + ηt. (5)

It is easily verifiable that this is a solution to the expectational difference equation (4). In

this equilibrium, inflation is a stationary process with autoregressive parameter |φ| < 1 and

driving process rt−1. What makes this equilibrium indeterminate is the fact that the solution

imposes no restriction on the evolution of ηt other than that it is a martingale difference

sequence with Et−1ηt = 0. Consequently, there can be infinitely many solutions. We also

note that the solution under indeterminacy is second-order autoregressive. Without loss of

generality, we can put some structure on the solution by decomposing ηt into a fundamental

component, namely the policy innovation εt and a non-fundamental component, the belief

shock bt, as in Farmer et al. (2015).2 More specifically, we can write ηt = γεεt+γbbt, where

Et−1bt = 0.3 The unrestricted, but finite coefficients γε and γb can be used to index specific

equilibria within the set of indeterminate equilibria. In the case of FIRE the choice of these

parameters is arbitrary.

We can also compute an REE under the information set Zt of the limited information

agent, namely the central bank in this example. The structure of the model, specifically the

2Strictly speaking, this is without loss of generality within the set of equilibria that are time-invariant
and linear. There are other, non-linear equilibria that can be constructed for this linear model. See Evans
and McGough (2005) for further discussion and classification.

3The interpretation as a belief shock in the terminology of Lubik and Schorfheide (2003) and Farmer et
al. (2015) emerges when we rewrite the inflation equation in terms of expectations only. Define ξt = Etπt+1

and rewrite equation (4) as ξt = φξt−1 + rt + φηt. In this representation, the forecast error ηt emerges as
an innovation to the conditional expectation ξt.
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form of the equations, remains the same, but the conditioning of the expectations operator

with respect to the information set changes. Specifically, we condition down the variables

in the system (1) - (3) where we make use of the fact that Zt is spanned by St so that we

can apply the law of iterated expectations: E
(
E(xt+h|Zt)|St

)
= xt+h|t. We also note that

the policy rate it is in the central bank’s information set which implies the policy rule:

it = φπt|t. (6)

Following the same steps as before, we find that:

πt+1|t = φπt|t + rt|t, (7)

which is a first-order difference equation in projected inflation πt|t. Assuming |φ| > 1, the

REE solution is πt|t = 1
φ−ρrt|t and it = φ

φ−ρrt|t, which is isomorphic to the FIRE solution

above; that is, central bank projections of the interest rate and inflation have the same

relationship as the actual variables in the full information model. This solution holds under

any definition of the central bank’s information set as long as Zt is spanned by St. What

underlies this reasoning is that the central bank has less information than the private sector,

but it still forms expectations rationally under its own information set, given its real rate

projections rt|t.
4

2.3 Rational Expectations Equilibria under Asymmetric Information Sets

We now turn to the limited-information settings with rational expectations. The key element

of LIRE is that there are two expectation formation processes that interact with each other.

The nature of this interaction and how it affects equilibrium determination crucially depends

on how the limited-information agent extracts and updates information. Our framework has

4This is a key difference to the framework in Lubik and Matthes (2016) who assume that the central
bank engages in least-squares learning to gain information about private-sector outcomes. In our setup, the
deviation from the standard rational expectations benchmark is only minor in the sense that the central
bank does not observe everything that the private sector does, but is otherwise fully informed.

5



three building blocks. First, the relationships describing the fully-informed agent, second,

those of the limited-information agent, and third, the filter used by the latter to gain

additional information. In terms of the simple example, the private sector equations are

given by the Fisher equation (1) and the law of motion of the real rate (3). Following

Svensson and Woodford (2004), the behavior of the central bank is given by the limited

information policy rule (6), where the nominal interest rate is a function of the information

set Zt. Specifically, the central bank sets the policy rate as responding to its inflation

projection πt|t. In addition, its behavior is constrained by its own projections, namely πt|t =

1
φ−ρrt|t and it = φ

φ−ρrt|t, and a projection for rt|t. The third element is the specification of

the central bank’s signal extraction problem. Since the model is linear and the exogenous

shocks are Gaussian, the Kalman-filter is the optimal filter in this environment. Application

of the Kalman filter imposes two restrictions on the equilibrium. First, the gain in the

optimal projection equation is endogenous and depends on the model’s second moment.

This leads to a non-trivial fixed-point problem since the model moments in turn depend

on the gain. The second restriction imposes that in any equilibrium in the full model the

central bank’s projections have to hold; that is, rational expectations formation across all

information sets has to be mutually and internally consistent. We discuss the solution of

our simple framework in two steps. The central bank’s projection equations depend on

the information set. For purposes of exposition we distinguish between exogenous and

endogenous information, whereby the former assume a noisy measurement of the real rate

and the latter a noisy measurement of inflation.

2.3.1 Equilibrium with an Exogenous Information Set

Suppose that the central bank observes the real interest rate with measurement error νt,

where νt ∼ iid N (0, σ2ν). Therefore, the central bank’s information set is Zt = rt + νt. It

is exogenous in that the real rate is an exogenous process which does not depend on other
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endogenous variables.5 The Kalman projection equation for the real rate is:

rt|t = rt|t−1 + κr
(
rt − rt|t−1 + νt

)
, (8)

where the Kalman gain κr is an endogenous coefficient and has to be computed separately.

We now combine the private sector Fisher equation (1) with the policy rule (6):

φπt|t = rt + Etπt+1. (9)

The evolution of inflation thus depends on two expectation formation processes: the central

bank’s projection of inflation πt|t, and the private sector’s expectation Etπt+1. It is in this

sense that the two nested information sets interact. Using the formalism described above,

we introduce the RE forecast error ηt and rewrite the this equation as:

πt = φπt−1|t−1 − rt−1 + ηt. (10)

We also note that the law of motion of the one-step-ahead real rate projection is rt|t−1 =

ρrt−1|t−1.

We can now combine these equations into a linear RE system:

πt =
φ

φ− ρ
rt−1|t−1 − rt−1 + ηt,

rt|t = (1− κr) ρrt−1|t−1 + κrρrt−1 + κrεt + κrνt, (11)

rt = ρrt−1 + εt,

where the first equation is derived from the Fisher equation with the central bank’s lagged

inflation projection substituted out using the restriction πt|t = 1
φ−ρrt|t. The second equation

is derived from the Kalman projection equation for the real rate and the third equation is

the law of motion of the actual real rate. This is a well-specified equation system in the three

5However, the process of making projections of the real rate, that is, of gaining information about its
true value may, and does, depend on endogenous outcomes.
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unknowns inflation πt, the exogenous real rate rt, and the central bank projection of the real

rate rt|t. It can be solved using standard methods for linear rational expectations models

that allow for indeterminacy, such as Lubik and Schorfheide (2003). What distinguishes

this system from the more standard FIRE setting is that a coefficient, the gain parameter

κr is endogenous and depends on the solution of the model; and second, the central bank’s

expectation rt|t has to be consistent with the solution of the full system it determines.

We now proceed to solve the model as follows. Following Farmer et al. (2015) we

rewrite the endogenous forecast error ηt = γεεt + γbbt + γννt in terms of its stochastics

components, namely the fundamnetal real rate innovation εt, the measurement error νt,

and the belief shock bt. A solution, if it exists, pins down the endogenous forecast error

ηt. It is determinate if γb = 0 and γε and γν are uniquely determined. Otherwise the

solution is indeterminate or an REE does not exist when no γ weights can be found that

obey the restrictions imposed by on the model. In the next step, we note that the equation

system is recursive and that the overall dynamic properties depend on the yet unknown

value of (1− κr) ρ. In order to determine the size of this ‘root’ and thus the nature of

the equilibrium we need to compute the gain κr first. For ease of notation, we find it

convenient to define innovations of any variable xt as its unexpected component relative to

the limited information set Zt: x̃t = xt−xt|t−1. We also define the projection error variance

Σ = var
(
r̃t − r̃t|t

)
= var (r̃t)− var

(
r̃t|t
)
, whereby cov(r̃t, r̃t|t) = var(r̃t|t).

The steady-state Kalman gain is given by:

κr =
cov

(
r̃t, Z̃t

)
var(Z̃t)

, (12)

where the tildes denote the projection innovations, e.g. r̃t = rt − rt|t−1 and Z̃t = r̃t + νt. It

can quickly be verified that var (r̃t) = ρ2Σ+σ2ε and that var(Z̃t) = var (r̃t)+σ2ν . Similarly,

we have cov(r̃t, Z̃t) = var (r̃t). This leads to the following expression for the Kalman gain:

κr =
ρ2Σ + σ2ε

ρ2Σ + σ2ε + σ2ν
, (13)
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which for positive Σ lies within the unit circle, 0 < κr < 1. The variance Σ = var
(
r̃t − r̃t|t

)
=

var (r̃t)−var
(
r̃t|t
)

can be computed by recognizing that cov(r̃t, r̃t|t) = var(r̃t|t) and var
(
r̃t|t
)

=

κrcov
(
r̃t, Z̃t

)
together with the projection equation r̃t|t = κrZ̃t. Substituting these expres-

sions into the definition of Σ results in a non-linear Riccati equation:

Σ =
ρ2Σ + σ2ε

ρ2Σ + σ2ε + σ2ν
σ2ν . (14)

The (positive) solution to this (quadratic) equation is given by:

Σ =
1

2ρ2

[
−
(
σ2ε +

(
1− ρ2

)
σ2ν
)

+

√
(σ2ε + (1− ρ2)σ2ν)2 + 4σ2εσ

2
νρ

2

]
. (15)

We can now establish that if a solution for the LIRE model with an exogeneous information

set exists it is indeterminate. Since 0 < κr < 1, it follows that 0 < (1− κr) ρ < 1 and

that the law of motion for rt|t in the full equation system is a stable difference equation.

As the equation for actual inflation does not depend on its own lags, we can thus conclude

that the equilibrium cannot be determinate. That is, the structure of the model does not

impose restrictions that would uniquely pin down the endogenous forecast error ηt under

the equilibrium selection criterion that the REE needs to be stationary. One such restriction

would be |κr| > 1, which we can rule out in this case.

In the final step, we need to show that this solution is consistent with central bank

projections. The condition πt|t = 1
φ−ρrt|t derived under the central bank’s information set

has to hold along any equilibrium path. It thus imposes the following restriction on inno-

vations with respect to the central bank’s information set: cov
(
π̃t, Z̃t

)
= 1

φ−ρcov
(
r̃t, Z̃t

)
,

which is an optimality condition for signal extraction under the limited information set Zt.

We have already established that cov
(
r̃t, Z̃t

)
= ρ2Σ + σ2ε. We can write cov

(
π̃t, Z̃t

)
=

cov (π̃t, r̃t) + cov (π̃t, νt). Using the innovation representation of the projection equation for

πt we have:

π̃t = −
(
r̃t−1 − r̃t−1|t−1

)
+ ηt, (16)
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where after some substitution we find that cov (π̃t, r̃t) = −ρΣ+γεσ
2
ε. Similarly, we can find

cov (π̃t, νt) = γνσ
2
ν . Combining all expressions then results in the following linear restriction

on the weights in the forecast error ηt = γεεt + γbbt + γννt:

γν =
φ

φ− ρ
Σ

σ2ν
+

1

φ− ρ
σ2ε
σ2ν
− σ2ε
σ2ν
γε. (17)

This condition restricts the set of multiple equilibria because it restricts the γ coefficients

that determine ηt to lie in a subspace of the full potential set of equilibria. This condition is

absent from full information models with indeterminacy, and thus differentiates the class of

LIRE models from their FIRE counterparts. At the same time, at least in the exogenous-

information case, these restrictions do not affect the way belief shocks bt (“sunspot shocks”)

may enter the system. We can now summarize the solution in the following

Proposition 1. The REE in the model (1) - (3) under LIRE with the exogenous informa-

tion set Zt = rt + νt is given by

πt =
φ

φ− ρ
rt−1|t−1 − rt−1 + γεεt + γbbt + γννt,

rt|t = (1− κr) ρrt−1|t−1 + κrρrt−1 + κrεt + κrνt, (18)

rt = ρrt−1 + εt,

where

κr =
ρ2Σ + σ2ε

ρ2Σ + σ2ε + σ2ν
,

Σ =
1

2ρ2

[
−
(
σ2ε +

(
1− ρ2

)
σ2ν
)

+

√
(σ2ε + (1− ρ2)σ2ν)2 + 4σ2εσ

2
νρ

2

]
,

−∞ < γb <∞,−∞ < γε <∞, γν =
φ

φ− ρ
Σ

σ2ν
+

(
1

φ− ρ
− γε

)
σ2ε
σ2ν
.

We can also draw the following conclusions at this point. First, the limited information

rational expectations equilibrium is indeterminate even though the full information coun-

terpart has a determinate equilibrium. Indeterminacy is generic in this setting with an
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exogenous information set in that any stationary REE allows for the presence of sunspot

shocks and does not uniquely determine the endogenous forecast error. From a purely me-

chanical perspective, the equation system (1) - (3) does not contain an unstable root despite

the presence of a jump variable, namely inflation. Furthermore, it is the optimal filtering

procedure employed by the central bank that introduces this stable root into the system

and thus leaves the endogenous forecast error undetermined. While there is a uniquely

determined mapping from the central bank’s projections to endogenous outcomes, actual

equilibrium outcomes, in particular the component that is orthogonal to the central bank’s

information set, remains indeterminate. A second observation is that under LIRE the con-

sistency requirement for central bank projections imposes restrictions on the set of multiple

equilibria. In full information solutions under indeterminacy the set of multiple equilibria

is typically unrestricted, whereas optimal filtering in the LIRE counterpart restricts how

the private agents coordinate on an equilibrium. From an empirical perspective, the FIRE

solution results in a reduced-form representation for inflation that is first-order autoregres-

sive. The LIRE solution on the other hand exhibits much richer dynamics. In particular,

the resulting inflation process can be quite persistent when the signal-to-noise ratio is small

as a large σ2ν translates into a small Kalman gain. This simple example is restrictive in

that the central bank only observes an exogenous process with error, whereas in practice

observed variables are typically endogenous (and measured with error). In the next step

we therefore asume an endogenous information set which creates additional feedback within

the model.

2.3.2 Equilibrium with an Endogenous Information Set

We now assume that the central bank observes the inflation rate with measurement error

νt such that Zt = πt + νt. We label this an endogenous information set as the observed

variable is endogenous to the solution of the model. The solution in the terms of the central

bank projections conditional on the limited information set is identical to the previous case.

What changes is the interdependence between the filtering problem and the equilibrium

11



dynamics. We find it convenient to express the analysis in terms of the projection equation

for the real rate to maintain comparability with the previous case. The projection equation

is therefore:

rt|t = rt|t−1 + κr
(
πt − πt|t−1 + νt

)
. (19)

From this we can derive the full equation system as before, namely:

πt =
φ

φ− ρ
rt−1|t−1 − rt−1 + ηt, (20)

rt|t = (ρ+ κr) rt−1|t−1 + κrrt−1 + κrνt + κrηt, (21)

rt = ρrt−1 + εt. (22)

This system looks superficially similar to the previous one with exogenous information.

However, the coefficient (ρ+ κr) on the lagged real rate projection now depends on the

endogenous dynamics of πt via the Kalman gain κr in the prediction equation. Whether

the equilibrium is determinate or indeterminate depends on whether the filtering implies an

unstable root |ρ+ κr| > 1; and, if not, gives rise to non-fundamental belief shocks affecting

equilibrium dynamics without causing non-stationary variations. Moreover, the Kalman

gain itself may no longer be unique in this setting or it may not even exist - a stark contrast

from the case of exogenous information.

We proceed in solving this equation system as before. We first derive the endogenous

Kalman gain and the associated forecast error variance and assess its implications for equi-

librium determinacy. We then derive restrictions imposed by the central bank projections

and establish consistency with the proposed equilibrium paths. The steady-state Kalman

gain is given by:

κr =
cov

(
r̃t, Z̃t

)
var(Z̃t)

, (23)

where r̃t = rt− rt|t−1 and Z̃t = π̃t+νt. As before, we parameterize the endogenous forecast

error ηt = γεεt + γbbt + γννt. It can be quickly verified that cov
(
r̃t, Z̃t

)
= −ρΣ + σηε,

where we denote σηε for notational convenience as the covariance between the endoge-
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nous forecast error and the real rate innovation. We also note that the negative sign in

this expression reflects the inverse relationship between inflation and the real rate in this

specification with an endogenous information set. After some algebra and making use of

π̃t = −
(
r̃t−1 − r̃t−1|t−1

)
+ ηt, we find that var(Z̃t) = var(π̃t) + var(νt) + 2cov (π̃t, νt) can

be expressed as var(Z̃t) = Σ + σ2η + σ2ν + 2σην , where σ2η and σην are the variance and

covariance of the endogenous forecast error. We can now derive the Kalman gain as:

κr =
−ρΣ + γεσ

2
ε

Σ + γ2εσ
2
ε + γ2bσ

2
b + (1 + γν)2 σ2ν

. (24)

While recognizing that the forecast error variance Σ still needs to be determined as a

function of the structural parameters, we can make two observations to highlight the effect

of an endogenous information set. First, the gain κr can be negative for small enough γε in

contrast with the exogenous information case; that is, κr < 0 if γε < ρΣ/σ2ε. Second, it also

leaves open the possibility that |κr| > 1, which, as can be shown, occurs for a large enough

real rate innovation variance σ2ε. In the next step, we need to compute the projection error

variance Σ = var (r̃t)− var
(
r̃t|t
)
. Using var (r̃t) = ρ2Σ + σ2ε and var

(
r̃t|t
)

= κrcov
(
r̃t, Z̃t

)
we can derive the following (quadratic) Riccatti-equation:

Σ = ρ2Σ + σ2ε −
(
−ρΣ + γεσ

2
ε

)2
Σ + σ2η + σ2ν + 2σην

. (25)

Finally, any equilibrium has to obey the restrictions imposed by the central bank pro-

jections, which is as before: πt|t = 1
φ−ρrt|t. This implies a different covariance restriction,

however, since the information set is different, namely cov
(
π̃t, Z̃t

)
= 1

φ−ρcov
(
r̃t, Z̃t

)
or al-

ternatively (φ− ρ) cov (π̃t, π̃t + νt) = cov (r̃t, π̃t + νt). After some rearranging we can write

this restriction as:

γν (1 + γν) = − φ

φ− ρ
Σ

σ2ν
−

γ2b
φ− ρ

σ2b
σ2ν

+
[1− (φ− ρ) γε] γε

φ− ρ
σ2ε
σ2ν
. (26)

While it looks superficially similar to the sub-space restriction derived under an exogenous
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information set, it is a considerably more complicated restriction, reflecting the endogeneity

of the information set. In the prior case, Σ is independent of the loadings on the innovations

in the forecast error decomposition, so that the restriction imposed is linear. In the current

case, the loadings affect Σ and the Kalman gain. Moreover, the subspace restriction is in

terms of a quadratic expression, which can imply that the solution to this equation and thus

the overall equilibrium is not unique under this parameterization. Moreover, there may be

no solution at all or only for a small parameter region. Before we discuss the solution in

more detail, we summarize our findings in the following

Proposition 2. Assuming |ρ+ κr| < 1, the REE, if it exists, in the model (20) - (22)

under LIRE with the endogenous information set Zt = πt + νt is given by

πt =
φ

φ− ρ
rt−1|t−1 − rt−1 + γεεt + γbbt + γννt,

rt|t = (ρ+ κr) rt−1|t−1 − κrrt−1 + κrγεεt + κrγbbt + κr (1 + γν) νt, (27)

rt = ρrt−1 + εt,

where

κr =
−ρΣ + γεσ

2
ε

Σ + γ2εσ
2
ε + γ2bσ

2
b + (1 + γν)2 σ2ν

,

Σ =
1

2

(
−α±

√
α2 − 4β

)
,

α = (1− ρ)2
[
γ2εσ

2
ε + γ2bσ

2
b + (1 + γν)2 σ2ν

]
− (1 + 2ργε)σ

2
ε,

β = −
[
γbσ

2
b + (1 + γν)2 σ2ν

]
σ2ε

γν (1 + γν) = − φ

φ− ρ
Σ

σ2ν
−

γ2b
φ− ρ

σ2b
σ2ν

+

(
1

φ− ρ
− γε

)
γε
σ2ε
σ2ν
.

The Proposition gives the set of solutions that apply when the equilibrium exists and

is indeterminate. If |ρ+ κr| < 1 the equation system lacks an unstable root that allows

us to pin down the endogenous forecast error. We will discuss the possibility of such

an alternative equilibrium in the next section. Instead the REE is indeterminate in that
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extraneous sunspot shocks affect the dynamics and that these dynamics are not uniquely

determined on account of how the fundamental shock and the measurement error affect

endogenous variables through their respective loadings γε and γν . Compared to the REE

under FIRE, the LIRE equilibrium exhibits a considerably higher degree of serial correlation

on account of the persistence imbued by the filtering process and the addition of a stable

root via indeterminacy. In addition, the Proposition highlights that a solution may not exist

if it violates additional restrictions. This stands in constrast with the typical notion of non-

existence in RE settings, where no stationary solution can be found since the system contains

too many explosive roots. What is different in the LIRE setting is that the coefficients that

determine whether an equilibrium exists and whether it is unique are endogenous to the

solution. While we can assess the determinacy properties of the system above for given κr,

our framework posits that the gain, and the projection error variance, are computed based

on the structural relationships given by the model. It may therefore be the case that for a

given parameterization the Kalman filter does not exist, for instance, when Σ < 0. In this

case the central bank’s projection are inconsistent with the information structure of the

economy. We also require a solution to be consistent with the central bank’s projections.

This imposes an additional non-linear restriction on any proposed equilibrium, given by

(26) in the case of an endogenous information set.

In order to give a sense how these elements interact in determining a solution, we plot

the two roots of the Riccati equation for Σ, the Kalman gain, and the subspace condition in

Figure ??. We choose a standard parameterization for illustration purposes and set γb = 0

for simplicity. The depicted restrictions are plotted as functions of the loading on the real

rate innovation γε over the range [−10, 10], which in turn imply values for the loading on the

measurement error γν as given by (26). The hyperbola of the subspace condition reflects the

quadratic on the measurement error loading γν . Existence of a solution requires that the

positive root of the Riccati equation and the subspace condition both hold. In this specific

example, however, they never intersect or even touch. Therefore, under this parametrization

no equilibrium exists since the Kalman filter does not exist in the sense that the projection
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equations for the variables outside of the central bank’s information set are explosive and

mutually inconsistent. Some experimentation for key parameters shows that the subspace

condition is consistent with a positive Σ when we reduce the serial correlation of the real

rate ρ, increase the policy coefficient φ, and also for a large measurement error variance σ2ν .

We will present additional results and a more extensive exploration of the parameter space

later on. Figure ?? also shows that the equilibrium would be indeterminate as in the case

with an exogenous information set since the Kalman gain is small and negative.

2.4 Additional Results

In this section, we provide some additional insights into our framework for the simple

example model that we have discussed so far. We return to these aspects in our discussion

of the general framework. First, we assess the possibility that the REE equilibrium under

LIRE can be determinate, depending on the existence of explosive roots in the system. If it

exists, we find it convenient to label such REE our benchmark equilibrium. In the second

exercise, we show that such benchmark equilibrium provides an upper variance bound for

the dynamics of the model. Finally, we contrast our framework with that of Svensson

and Woodford (2004) who used a minimum state variable (MSV) approach as a solution

technique. We argue that they thereby miss salient aspects of this environment.

2.4.1 Determinacy in a Benchmark Equilibrium

It is well known that the determinacy properties of a linear RE model are determined

by the number of unstable eigenvalues, or roots, of the underlying equation system. In a

standard root-counting approach, if the number of explosive roots matches the number of

forward-looking, or jump variables, the equilibrium is unique. With fewer explosive roots,

the equilibrium is indeterminate and non-existent otherwise. We can apply this reasoning

to our simple model under the two information sets. The respective dynamic RE equation

systems are given in Propositions 1 and 2. In both cases, the system is recursive in that

the dynamic properties, and thus the relevant eigenvalues, depend only on the behavior
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of the projection equations for the real rate. In the case of an exogenous information set,

the Kalman filtering problem can be solved independently from the rest of the model since

the measurement equation comprises only exogenous variables. As we have seen before,

the Kalman gain 0 < κr < 1 in this case, so that the projection equation is a stable

difference equation. Given that there is one jumep variable in the system, namely πt, thus

one endogenous forecast error, the lack of an unstable root means that ηt is not pinned

down and any equilibrium under this exogenous information set is indeterminate.

The case of an endogenous information set is more interesting. As before the full equa-

tion system is recursive so that we can focus on the behavior of the projection equation:

rt|t = (ρ+ κr) rt−1|t−1 + κrrt−1 + κrνt + κrηt. (28)

We rewrite the equation slightly using the definition r∗t = rt − rt|t, which is the error from

the projection onto the current information set:

r∗t = (ρ+ κr) r
∗
t−1 + εt − κrνt − κrηt. (29)

This is a first-order difference equation driven by a linear combination of shocks: the ex-

ogenous real-rate innovation εt, the exogenous measurement error νt, and the endogenous

forecast error ηt. This equation is explosive if |ρ+ κr| > 1, that is, if the Kalman gain

is large enough, which is a possibility that can arise given the solution for the gain in

Proposition 2.

Now suppose for the sake of argument that |ρ+ κr| > 1. The solution to this explosive

equation is r∗t ≡ 0 and ηt = 1
κr
εt − νt. It pins down the endogenous forecast error as

a function of fundamentals alone. The equilibrium may thus be considered determinate

as it is not affected by sunspot shocks and the system provides the necessary explosive

root to match the number of jump variables. However, this is not necessarily a unique

equilibrium in the sense that there is only one solution to the dynamic equation system

given a set of parameters. This is because the Kalman gain κr is endogenous and as
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such there can in general be other equilibria with a different Kalman gain. Existence of

this benchmark solution requires that we can find a κr such that |ρ+ κr| > 1 and that

the subspace condition holds. We can verify that this is in fact the case by substituting

the solution into the projection equation which results in rt = ρrt−1 + εt, that is, the

exogenous process for the real rate. Substituting the solution in the inflation equation

yields πt = ρ
φ−ρrt−1 + 1

κr
εt − νt, which depends on the Kalman gain. In terms of the

forecast error decomposition ηt = γεεt + γbbt + γννt we have γε = 1/ (φ− ρ), γν = −1, and

γb = 0. The latter follows since under determinacy in the sense of meeting the eigenvalue

criterion sunspot shocks do not affect equilibrium outcomes.

This proposed equilibrium has the feature that it is what may be labelled a full revelation

solution in that it implies that rt|t = rt; that is, the real rate projection using current

information is exact. However, the equilibrium inflation rate is not revealed without error

to the central bank since it depends on the measurement error νt. Since this solution

achieves full revelation for the real rate, we hypothesize that it is consistent with the full

information solution that we derived above in the following sense: πFIt = ρ
φ−ρrt−1 + 1

φ−ρεt,

which is void of the measurement error. Comparing the LIRE and FIRE solution we find

that πLIt = πFIt − νt, which implies κr = φ − ρ. As a final step, we need to verify that

this Kalman gain is consistent with the Riccati equation. Under this parametrization,

the Riccati equation has a positive solution and a solution with Σ = 0, which implies

full revelation of the real rate as there is no projection error. This root intersects with

the subspace condition at the value γε = 1/ (φ− ρ).6 Finally, the root of the projection

equation ρ + κr = φ > 1, which validates our original assumption. We summarize these

finding in the following Proposition.

Proposition 3. (Benchmark Equilibrium) The model (20) - (22) under LIRE with the

6In reference to Figure ?? this means that the negative root touches zero where it intersects with the
hyperbola of the subspace condition.
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endogenous information set Zt = πt + νt has an equilibrium with the properties

πt =
1

φ− ρ
rt − νt,

rt|t = 0, (30)

rt = ρrt−1 + εt,

where

κr = φ− ρ,Σ = 0, γε = 1/ (φ− ρ) , γν = −1, γb = 0.

To summarize, in the LIRE model with an endogenous information set it is possible to

find an equilibrium that (almost) replicates the FIRE equilibrium, subject to the presence

of the measurement error. The scenario described in this section is akin to the outcome

described in Lubik and Schorfheide (2003), where an indeterminate equilibrium without

sunspots is observationally equivalent to a corresponding determinate equilibrium.

2.4.2 Variance Bounds

In our framework, we require any equilibrium to obey the central bank projections condi-

tional on its nested information set., which guarantees that expectation formation of the

two types of agents in the model is mutually consistent. As it turns out, however, this

projection condition can also provide bound on the variance of the model’s endogenous

variables. In this section, we show specifically that the benchmark equilibrium discussed

above has the highest inflation variance of all equilibria. Recall that the RE solutions in the

space of the central bank projections is πt|t = 1
φ−ρrt|t. This implies the projection condition

cov
(
π̃t, Z̃t

)
= 1

φ−ρcov
(
r̃t, Z̃t

)
for information set Zt. We showed above that there is no

benchmark equilibrium in the case of an endogenous information set as the Kalman gain

stays bounded within the unit circle. We therefore focus on the endogenous information

set Zt = πt + νt. Substituting this expression into the projection condition and expanding

terms yields:

var(π̃t) + cov (π̃t, νt) =
1

φ− ρ
cov (π̃t, r̃t) , (31)
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where we have made use of the fact that cov (r̃t, νt) = 0. We can now collect terms and

write:

var(π̃t) = cov

(
π̃t,

1

φ− ρ
r̃t − νt

)
. (32)

Using the Cauchy-Schwarz inequality this allows us to derive the upper bound on the

inflation projection error variance:

var(π̃t) ≤ var
(

1

φ− ρ
r̃t − νt

)
=

(
1

φ− ρ

)2

var(r̃t) + σ2ν . (33)

Since πt = π̃t + πt|t−1 and also πt|t−1 = 1
φ−ρrt|t−1, we can derive the expression:

var(πt) = var(π̃t) +

(
1

φ− ρ

)2

var(rt|t−1) + 2cov
(
π̃t, rt|t−1

)
, (34)

whereby the covariance is zero under optimal projections. Similarly, var(rt) = var(r̃t) +

var(rt|t−1). Substituting these expressions and collecting terms then results in:

var(πt) ≤
(

1

φ− ρ

)2

var(rt) + σ2ν = σ2ν +
σ2ε

(1− ρ) (φ− ρ)2
. (35)

We note that the second term in the variance bound is the inflation variance under

FIRE, whereby πt = 1
φ−ρrt and var(πt) = σ2

ε

(1−ρ)(φ−ρ)2 , whereas the first term is the mea-

surement error variance σ2ν . We showed above that the benchmark equilibrium in which the

endogenous forecast error is uniquely determined is π∗t = 1
φ−ρrt−νt, with its variance given

by var(π∗t ) = σ2ν + σ2
ε

(1−ρ)(φ−ρ)2 , which is equal to the upper bound in the expression above.

We can therefore conclude that the inflation variance in the benchmark equilibrium is the

highest inflation variance of any equilibria under LIRE with an endogenous information set,

i.e., var(πt) ≤ var(π∗t ). This bound applies to other equilibria if they exist. It does not

presuppose that other such equilibria exist for every parameter configuration, but since all

potential equilibria must satisfy the projection condition the bound applies.
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2.4.3 MSV Solution: Svensson and Woodford (2004)

In this section we describe a minimum-state-variable (MSV) approach as in Svensson and

Woodford (2004). An important difference between their work and ours is that, in the

present model is described by a given rule, whereas Svensson and Woodford endevaour to

characterize optimal policy. However, for a given set of first-order conditions to the optimal

policy problem under imperfect information, their approach falls into the class of expec-

tational linear-difference equations studied here as well (see Section ?? for a more general

discussion). Svensson and Woodford (2004) are not alone in pursing a MSV approach in

such models, other examples are given by Aoki (2008), or Nimark (2008); applied to our

model, this approach begins with a guess that the equilibrium process for inflation has the

following form:

πt = g r∗t + ḡ rt|t ḡ ≡ 1

φ− ρ
(36)

= g rt + (ḡ − g) rt|t (37)

For any choice of g, this guess automatically satisfies the sub-space condition πt|t = ḡrt|t.

What remains to be seen is which values for g (if any) would be consistent with the rest

of the dynamic system, notably the innovations version of Fisher equation in (??). Notice

that the proposed solution excludes belief shocks.

Let us proceed by deriving the dynamics for r∗t and rt|t implied by (36) for a given value

of g. A slight complication for setting up the Kalman filter — encountered also by Svensson

and Woodford — is that the guess for inflation in (36) depends on the projected real rate,

and thus on the history of measurements (Zt) which in turn depends on the history of

inflation:

Zt = g rt + (ḡ − g) rt|t + νt (38)

However, notice that the term in rt|t does not add any new information to Zt; in fact
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Zt rather provides an implicit definition of an information set spanned by:

Wt = g rt + νt (39)

in the sense that E(xt|Zt) = E(xt|W t) for any variable xt. While projections of variables

onto W t and Zt are equivalent, the associated Kalman gains will, however, differ by a factor

of proportionality.7

For starters, consider the Kalman gain involved in projecting the real rate onto W t,

r̃t|t = κW̃t:

and define

R2 ≡ g ·K ⇒ 0 ≤ R2 ≤ 1. (40)

We can then write

π̃t = g · r̃t + (ḡ − g)κ W̃t (41)

=
(
g · (1−R2) + ḡ ·R2

)
r̃t + (ḡ − g)κ νt (42)

=
(
g · (1−R2) + ḡ ·R2

)
ρ r∗t−1 +

(
g · (1−R2) + ḡ ·R2

)
εt + (ḡ − g)κ νt︸ ︷︷ ︸

=ηt

(43)

where the last line uses r̃t = ρ r∗t−1 + εt.

In order to match (??) we can set ηt equal to the shock components of (43) as indicated

above and we need to find a value for g that sets the loading on r∗t−1 in (43) equal to minus

7Let Kr continue to denote the Kalman gain of rt onto Zt and we have

Z̃t = W̃t + (ḡ − g) ·Kr · Z̃t = W̃t/(1− (ḡ − g) ·Kr).
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one:

(
g · (1−R2) + ḡ ·R2

)
ρ = −1 (44)

⇒ g ≤ 0 (45)

where the inequality follows from ḡ, R2 and ρ being all positive numbers. As a further

condition, the solution approach espoused by Svensson and Woodford (2004) would require

the roots of the characteristic equation describing the joint dynamics of πt, rt|t and rt,

see (20)- (22) above, to satisfy the usual counting rule for values inside and outside the unit

circle. In the present case, with only one backward-looking variables, rt, and two forward-

looking variables, πt and rt|t, the approach of Svensson and Woodford (2004) would rely

on finding one stable and two unstable eigenvalues. However, it can be shown that in the

present example, the Kalman filter will always stabilize the dynamics of rt−rt|t causing the

system to have two stable and only one unstable root.

Note that the set of MSV candidate solutions — described by (36) for any given value

of g — does not span the set of all candidate solutions that we have looked at so far —

described by any combination of weights γ for the linear combination of shocks that make

up the endogenous forecast error ηt: Furthermore, the set of SW candidates does not even

span the restricted set of candidates for ηt where γb = 0. To see this, notice that the MSV

candidate is parametrized by a single unknown coefficient, g, which places a restriction on

the weights γε and γν implied by the associated specification of ηt as seen in (43).

2.5 Discussion

[TO BE WRITTEN]
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3 General Setup

3.1 A linear RE system with asymmetric information

Denote the policy instrument by it and let Xt and Y t be vectors of backward- and forward-

looking variables that do not include it.
8

The backward-looking variables are characterized by exogenous forecast errors, εt:

Xt − Et−1Xt = Bxε εt εt ∼ N(0, I) (46)

where the number of independent, exogenous shocks, Nε may be smaller than the number

of backward-looking variables, Nx, and Bxε is assumed to have full column-rank. Forecast

errors for the forward-looking variables, denoted

ηt ≡ Y t − Et−1Y t, (47)

are endogenous and remain to be determined as part of the model’s RE solution.

FoldingXt and Y t into the vector St, we consider the following set of dynamic equations:

St =

Xt

Y t

 (48)

JEtSt+1 + ĴSt+1|t = HSt + ĤSt|t +H iit |J | 6= 0 (49)

it = Φiit−1 + ΦJSt+1|t + ΦHSt|t (50)

We require |J | 6= 0, though it might be possible to extend our approach to handle also

cases where J is singular. Typically, such cases arise in the presence of static, definitional

equations, which could be substituted out to fit (49).

8Throughout, vectors and matrices will be denoted with bold letters; notice, however, that our use of
lower- and uppercase letters does not distinguish between matrices and vectors. In most applications, it
is likely to be a scalar, but nothing in our framework hinges on this assumption and so we use the generic
vector notation, it, throughout. In our context, keeping the policy instrument separate from Xt and Y t will
be useful since it will always be assumed to be perfectly known and observable to both public and central
bank.
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The imperfectly informed policymaker — in light of our examples synonymously referred

to as “central bank” — sets it according to the rule given in (50). By definition, the

policymaker must know the current value and history of her instrument choices. Moreover,

all variables entering (50) are expressed as expectations conditional on the central bank’s

information set, denoted St+1|t and St|t. Before describing the nature of these expectations

and the underlying informational assumptions in more detail, we would like to point out

that the form of the reaction function for the policy instrument given in (50) can capture

a variety of settings for policymaking. For example, as illustrated in our paper, such a

reaction function can capture Taylor-type interest rate rules when evaluated using central-

bank projections as studied, among others, by Orphanides (2001, 2003). As demonstrated

in our Fisher-economy example, such a reaction function can also depend on exogenous

driving variables via its dependence on Xt as part of St.
9 Using suitable definitions of Xt

and Y t, the reaction function in (50) has also the form of optimal policy as prescribed by

the first-order conditions for optimal policy under asymmetric information as derived by

Svensson and Woodford (2004) and Aoki (2006) in a comparable setting.10

The policymaker is supposed to form rational expectations based on an information set

that is characterized by the observed history of a signal, denoted Zt (as well as knowledge

of all model parameters). For any variable V t, and any lead or lag h, EtV t+h denotes

expectations based on full information whereas

V t+h|t ≡ E(V t+h|Zt) Zt = {Zt,Zt−1,Zt−2, . . .} (51)

9In principle, the reaction function could also a feature an exogenous residual in the form of a “policy
error” captured as part of Xt that enters the system only via (50). However, in most meaningful circum-
stances the policy error should be spanned by the central bank’s information set. In light of our assumption
that the central bank’s information set is nested by the public’s information set, realizations of this policy
residual would thus end up being common knowledge. Except for the effects of asymmetric information, we
study, however, a linear system and the effects of exogenous shocks that are common knowledge, will be
identical to the full information case.

10Specifically, Svensson and Woodford (2004)augment a system similar to (49) and identical informational
assumption as used here with a quadratic loss function to derive linear first-order conditions akin to (50); see
their equations (15) and (40) for the cases of optimal policy under discretion and commitment, respectively.
(In the commitment case, the vector of backward-looking variables would also have to include the evolution
of Lagrange multipliers associated with equations describing the private sector’s forward-looking behavior.)
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denotes conditional expectations under the central bank information set. By construction,

central bank actions, it, are spanned by the history of observed signals, such that we always

have it = it|t even though the policy instrument will not be explicitly listed as part of the

measurement vector Zt.

In our linear Gaussian setting, conditional expectations will be represented by linear

projections that can be computed via the Kalman filter. Accordingly, we will refer to the

central bank’s expectations synonymously as “projections;” however, not without empha-

sizing that these are indented to represent optimal inference of the central bank under

limited information. For further use, it will be helpful to introduce the following notation

for innovations Ṽ t and residuals V ∗t :

Ṽ t ≡ V t − V t|t−1 , V ∗t ≡ V t − V t|t = Ṽ t − Ṽ t|t . (52)

The measurement vector is generally given by a linear combination of backward- and

forward-looking variables:11

Zt = CSt = CxXt +CyY t (53)

For concreteness, we delineate the following two cases: one where the signal depends on

endogenous variables (specifically, choosing Cy = I) as well as the case where the signal

solely reflects exogenous variables (Cy = 0 and Xt exogenous). Both cases are described

next; since both are nested by the general definition given by (53), we will continue to refer

to (53), unless reference to a specific cases is necessary.

11Please recall that “measurement errors” — disturbances to the measurement equation that would oth-
erwise be absent from a full-information version of the model — are assumed to have been lumped into
the vector of backward-looking variables, Xt. By construction, we have then Zt|t = CSt|t = Zt and thus

C Var
(
St|Zt

)
C
′

= 0.
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3.1.1 Endogenous signal

In (53), the signal observed by the central bank involves a linear combination of forward-

and backward-looking variables, such that the signal depends at least in part on endogenous

variables. When considering this case, and to simplify some of the algebra, we limit ourselves

to signal vectors that have the same length as the vector of forward-looking variables (Y t)

and that have no rank-deficient loading on Y t. All told, we assume that Cy in (53) is

square and invertible. In this case, Cy can be normalized to the identity matrix.12

In the endogenous-signal case, we thus consider signal vectors of the form

Zt = CxXt + Y t and thus C =

[
Cx I

]
. (54)

Note that the endogenous-signal setup also includes the case where each forward-looking

variable is observed with error, as in Zt = Y t + νt where νt is an exogenous measurement

error to be included among the set of backward-looking variables in Xt.

3.1.2 Exogenous signal

To consider the case of a purely exogenous signal, we need to distinguish between endogenous

and exogenous components of the vector of backward-looking variables Xt. Let Xt be

partitioned into exogenous variables, denoted xt, and endogenous variables (like the lagged

inflation rate in case of a Phillips Curve with indexation), denoted kt.
13

Exogeneity of xt places several zero restrictions on the system matrices in (49), and its

dynamics are reduced to

xt = hxxxt−1 + bxεεt (55)

12Consider the case of a signal Ẑt = ĈxXt+ĈyY t where Ĉy is square and nonsingular. The information

content provided by Ẑt is equivalent to what is spanned by Zt = Ĉ
−1

y Ẑt with Cx = Ĉ
−1

y Ĉx.
13The dynamics of kt are not of concern for now. In general, we can think of their transition equation as

kt+1 = hkxxt + hkkkt + hkyY t + hkiit +Bkεεt+1.
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where hxx and bxε are appropriate sub-blocks of H and Bxε. The signal is then given by

Zt = Cxxt. (56)

Our presentation will mainly focus on the endogenous-signal case and return to the case

of an exogenous signal later in Section 3.3.4.

3.1.3 Mapping a few examples into the general setup

The simple Fisher-equation example, described in Section 2, can be cast into the general

framework described here as follows:

Xt =

rt
νt

 and Y t = πt (57)

The New Keynesian (NK) example described in Section 4 of the paper can fits into our

general framework as follows:

Xt =



rt

∆ȳt

νπt

νyt

ȳt−1

πt−1


and Y t =

πt
xt

 (58)

3.1.4 Full information solution

The full-information system can easily be solved using familiar methods, known, for example

from Klein (2000) or King and Watson (1998). We stack all variables, including the policy

control, into a vector St that is is partitioned into a vector of Ni + Nx backward-looking
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variables, X t, and a vector of Ny +Ni forward-looking variables, Y t:14

St =

X t

Y t

 where X t =

it−1
Xt

 Y t =

Y t ,

it

 (59)

Using, S ′t =

[
i′t−1 S′t i′t

]
, the dynamics of the system under full information are then

characterized by the following expectational difference equation:


I 0 0

0 J + Ĵ 0

0 ΦJ 0


︸ ︷︷ ︸

J

EtSt+1 =


0 0 I

0 H + Ĥ H i

−Φi −ΦH I


︸ ︷︷ ︸

A

EtSt (60)

Throughout, we assume that the pencil |J −A z| has Ni + Nx roots outside the unit

circle and Ny+Ni roots inside the unit circle.15 This condition ensures a unique equilibrium

under full information, and the solution has the following form:

EtX t+1 = P X t Y t = G X t (61)

which can be broken down further into

EtXt+1 = Pxx Xt +Pxi it−1 (62)

it = P ix Xt +P ii it−1 (63)

Y t = Gyx Xt + Gyi it−1 (64)

14The presence of the lagged policy control in X t serves to handle the case of interest-rate smoothing,
Φi 6= 0, and can otherwise be omitted. In the case of interest rate smoothing, it−1 enters the system as a
backward-looking variables. In the setups of Klein (2000) or King and Watson (1998), it is required that all
backward-looking variables be placed at the top of St.

15In the case of the simple Fisher economy in Section 2, the root-counting condition was satisfied by
requiring that the central bank’s interest-rate rule satisfied the Taylor principle, responding more than
one-to-one to fluctuations in inflation.
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with P =

P ii P ix
P ix Pxx

 and G =

Gyi Gyx
Gii Gix

 . (65)

For future reference it will also be convenient to define P i, Gy, I, and F such that:16

it = P i X t P i =

[
P ii P ix

]
(66)

Y t = Gy X t Gy =

[
Gyi Gyx

]
(67)

Xt = I X t I ≡
[
0 I

]
(68)

St = FX t F =

 I
Gy

 (69)

Equilibrium dynamics in the full-information case are then be summarized by:

X t+1 = PX t +Bxεεt+1 B =

 0

Bxε

 (70)

Y t = GX t (71)

The endogenous forecast errors are given by ηt = GyxBxε εt. The decision-rule coeffi-

cients P and G do not depend on the shock variances encoded in Bxε and, of course, not

on the measurement loadings C either.

Measurement errors that are included in Xt are, of course, superfluous for a full-

information solution. The measurement errors would affect endogenous variables of the

system only via C, which does not play a role in the full information solution. But, also

when computing a full-information solution, there is no harm including measurement errors

in Xt: The corresponding columns of Gyx — as generated, for example, by the procedures

of Klein (2000) or King and Watson (1998)— are set to zero in this case.

16Note further that the definitions of X t and Yt imply Gii = Pii and Gix = Pix.
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3.2 System conditioned down on Central Bank Projections

Conditioning all variables down onto Zt we get the same linear RE system as under full

information, just in terms of projections onto Zt:

J St+1|t = A St|t (72)

and the solution mimics the form known from the full-information case

X t+1|t = P X t|t Y t|t = G X t|t (73)

which — recalling that it = it|t = it|t+1 — can again be further broken down into

Xt+1|t = Pxx Xt|t +Pxi it−1 Y t|t = Gyx Xt|t + Gxi it−1 etc. (74)

Anticipating a linear Gaussian equilibrium, optimal expectations of the central bank can

be represented by a Kalman filter (details to be described further below). Among others,

the Kalman filter implies a linear relationship between projected innovations of unobserved

variables and observed innovations in the signal, as in X̃ t|t = KX Z̃t+1 where KX is a yet

to be derived Kalman gain. Conditional on a sequence of innovations to the central bank’s

information set — that is a sequence of Z̃t — central bank projections evolve according to:

X t+1|t+1 = PX t|t + X̃ t+1|t+1 X̃ t+1|t+1 = KX Z̃t+1 KX =

 0

Kx

 (75)

(The upper block of KX is zero since it−1|t = it−1|t−1 = it−1.)

Since we assumed that conditions for a unique rational expectations equilibrium under

full information are satisfied, P is a stable matrix. Consequently, for any bounded sequence

of Z̃t, the dynamics of central bank projections for X t|t as well as Y t|t = GX t|t are thus
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stable, producing only bounded outcomes for X t|t and Y t|t.17

3.2.1 The projection condition

Equation (74) is an equilibrium condition that restricts the dynamics of central bank pro-

jections; henceforth we refer to the resulting restrictions as “projection condition.” The pro-

jection condition has implications for innovation dynamics and the Kalman gains. Noting

that it−1 = it−1|t−1 we obtain the following restrictions between projections of innovations

in forward- and backward-looking variables:

Ỹ t|t = Gyx X̃t|t and thus Cov (Ỹ t, Z̃t) = Gyx Cov (X̃t, Z̃t) (76)

Alternatively, denoting Kalman gains by

Kx = Cov (X̃t, Z̃t)
(

Var (Z̃t)
−1)

(77)

Ky = Cov (Ỹ t, Z̃t)
(

Var (Z̃t)
−1)

(78)

Ki = Cov (̃it, Z̃t)
(

Var (Z̃t)
−1)

(79)

the projection condition implies

Ky = Gyx Kx Ki = P ix Kx .. (80)

The projection condition imposes a second-moment restriction on the joint distribution

of the innovations X̃t and Ỹ t that will be derived as part of the Kalman filter derived further

below. Given the definition of the signal, these innovations also determine Z̃t = CxX̃t+Ỹ t

as well as ĩt = ĩt|t = P ix KxZ̃t.
18 As a second-moment restriction, the projection condition

restricts only co-movements on average but not for any particular realization of X̃t and Ỹ t.

17As will be shown below, existence of a time-invariant, steady state Kalman filter, also implies stationarity
of Z̃t. For now, recall that, by definition, Z̃t+1 is unpredictable under Zt: Z̃t|t−1 = 0.

18Recall that ĩt = ĩt|t holds automatically, since the policy instrument is defined to lie in the central
bank’s information set.
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Substituting the projection condition (74) back into (49) yields the following:

EtSt+1 = ASt + ÂSXX t|t (81)

where A ≡ J−1H , (82)

ÂSX = J−1
(
ĤF − ĴFP +H iP i

)
. (83)

Compared to (49), the expectational difference system in (81) features no more forward-

looking projections (St+1|t) and the effects of policy are subsumed in projections of backward-

looking variables (X t|t). However, as before, this difference system still involves two different

sets of expectations; these will be separated in the next step described below.

3.3 Innovations System

What remains to be determined are the dynamics of innovations, i.e. projections of current

variables off the lagged history of central bank signals, i.e. S̃t ≡ St − St|t−1.19 To char-

acterize the innovation dynamics, we return to the original linear difference system given

by (81), subtract the central bank projections, St+1|t = ASt|t + ÂSXX t|t, from both sides

of the system, and obtain the following quasi -difference system:

S̃t+1 = A(S̃t − S̃t|t) +

Bxε 0

0 I


εt+1

ηt+1

 (84)

We refer to (84) as “quasi-difference” system since it describes the transition from projection

residuals S∗t = S̃t − S̃t|t to innovations S̃t.

Assuming an equilibrium with time-invariant, linear relationships and Gaussian distur-

bances, endogenous forecast errors can always be expressed as a linear combination of the

exogenous shocks, εt — henceforth also referred to as “fundamental shocks” — and a set of

Ny shocks that are orthogonal to these fundamental shocks, which we will refer to as “belief

shocks, bt”; see also Farmer et al. (2015) and Lubik and Schorfheide (2003). While those

19Please recall the distinction between St and St: St includes St and the policy control, which always
lies in the span of Zt.
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studies could merely rely on belief shocks to be uncorrelated with fundamentals and unan-

ticipated, Et−1bt = 0, we also need to assume that they are jointly normally distributed

with the fundamental shocks:

ηt = Bηε εt +Bηb bt where bt ∼ N(0, I) (85)

As only the product Bηb bt enters the system, we normalize bt to have a variance-covariance

matrix equal to the identity matrix.

The coefficient matrices Bηε, and Bηb remain to be determined. Before turning to

procedures that solves for valid values of those coefficients in Sections 3.3.3 and 3.3.4, we

describe the conditions for valid values for these undetermined coefficients resulting in a

time-invariant, equilibrium with stable dynamics.

A valid equilibrium with time-invariant linear decision rules requires that the shock

loadings Bηε, and Bηb ensure the existence of a steady-state Kalman filter that also satisfies

the projection condition as captured in the following definition.20

DEFINITION 1 (Equilibrium). In a stable, linear, and time-invariant equilibrium, the fore-

cast errors of the forward-looking variables are a linear combination of fundamental shocks

and belief shocks, with time-invariant loadings Bηε and Bηb, as in (85), and the belief shocks

are normally distributed. Equilibrium dynamics of the forward-looking variables, Y t, satisfy

the expectational difference system described by (49) and (50). All expectations are rational,

and the imperfectly informed agent’s information set is described by (53). In particular, in

such an equilibrium, . . .

1. forward- and backward-looking variables are stationary,

2. a steady-state Kalman filter exists that characterizes central bank expectations condi-

tional on the information set Zt; henceforth, simply referred to as “Kalman filter,”

3. the projection condition, stated in equation (74), or equivalently in (80), is satisfied.
20Henceforth, references to valid equilibria are always understood in the context of time-invariant, linear

decision rules and Gaussian belief shocks.
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As will be shown next, the first two conditions listed in Definition 1 are satisfied as

long as — for given values for the mappings from exogenous to endogenous shocks, encoded

in Bηε, and Bηb — the residual system (84) and the measurement equation meet well-

established conditions known from linear systems theory that are known as “detectability”

and “stabilizability.” Moreover, existence of a steady-state Kalman filter ensures also stable

dynamics for innovations St. We then turn to an algorithm to solves for shock loadings

that also satisfy the projection condition, as required by Definition 1 as well.

3.3.1 Kalman filter

In this section, we consider the necessary conditions to be imposed on the endogenous

forecast errors ηt, in order to assure the existence of a steady-state Kalman filter. So far,

we do not enforce the projection condition, yet. Given a solution for ηt of the form in (85),

exogenous and endogenous shocks have a joint, multivariate normal distribution. In this

case, the Kalman filter describes optimal expectations. The presence of projected variables,

St|t, St+1|t, it etc. in (49), does not affect the core of the central bank’s filtering problem.

Based on (84) and (53), and recalling S∗t ≡ S̃t − S̃t|t, we obtain the following state and

measurement equations in innovations form:21

S̃t+1 = AS∗t−1 +Bwt+1 wt+1 ≡

εt+1

bt+1

 ∼ N(0, I) (86)

Z̃t+1 = CS∗t +Dwt+1 (87)

where B ≡

Bxε 0

Bηε Bηb

 , C = CA, D = CB. (88)

The state equation (86) and measurement equation (87) transform the innovations system

provided by (84) and (53) into a system with explicit shocks to the measurement equation,

21Notice that the same dynamic system for innovations as in (86) and (87) would also result from a
hypothetical state space given by St+1 = ASt +Bwt+1 and Zt = CSt with an identical Riccati equation
for Var (St|Zt) and identical Kalman gain; see also Hansen and Sargent (2005), Baxter et al. (2011) or
Mertens (2016) for related arguments.
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as captured by the term Dwt in (87); in this form we can state the following assumption

that allows us to appeal to well-established results from Kalman-filtering theory about the

existence of a stable solution.22

ASSUMPTION 1 (Non-degenerate shocks to the signal equation). We assume that shocks

to the signal equation have a full-rank variance-covariance matrix; that is |DD′| 6= 0.

Existence of a steady-state Kalman filter relies on finding an ergodic distribution for

S∗t (and thus S̃t) with constant second moments Σ ≡ Var (S∗t ). When a steady-state filter

exists, a constant Kalman gain, K relates projected innovations of S̃t to innovations in the

signal:

S̃t|t = KZ̃t (89)

where K = Cov
(
S̃t, Z̃t

)(
Var

(
Z̃t

))−1
=
(
AΣC ′ +BD′

) (
CΣC ′ +DD′

)−1
(90)

The dynamics of S∗t are then characterized by

S∗t+1 = (A−KC) S∗t + (B −KD)wt+1 (91)

Existence of a steady-state filter depends on finding a symmetric, positive (semi) definite

solution Σ to the following Riccati equation:

Σ = (A−KC)Σ(A−KC)′ +BB′

= AΣA′ +BB′ −K
(
CΣC ′ +DD′

)
K ′

= AΣA′ +BB′ −
(
AΣC ′ +BD′

) (
CΣC ′ +DD′

)−1 (
AΣC ′ +BD′

)′
(92)

Intuitively, the Kalman filter seeks to construct mean-squared error optimal projections

St|t and seeks to minimize Var (S∗t ). A necessary condition for the existence of a solution

22Alluding to jargon known from the work of Fernández-Villaverde et al. (2007), the system provided
by (84) and (53) has “ABC” form while the system given by (86) and (87) has “ABCD” form. See also
Komunjer and Ng (2011).
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to this minimization problem is the ability to find at least some gain K̂ for which A− K̂C

is stable. Thus, when existence of the second moment for the residuals, Var (S∗t ) = Σ ≥ 0,

implies that the transition matrix in (91), A−KC, is stable.

Formal conditions for the existence of a time-invariant Kalman filter have been stated,

among others, by Anderson and Moore (1979), Anderson et al. (1996), Kailath et al. (2000),

and Hansen and Sargent (2007). Necessary and sufficient conditions for the existence of a

unique and stabilizing solution that is also positive semi-definite depend on the “detectabil-

ity” and “unit-circle controllability” of certain matrices in our state space. We restate those

concepts next.

DEFINITION 2 (Detectability). A pair of matrices (A,C) is detectable when no right eigen-

vector of A that is associated with an unstable eigenvalue is orthogonal to the row space

of C. That is, there is no non-zero column vector v such that Av = vλ and |λ| > 1 with

Cv = 0.

Detectability alone is already sufficient for the existence of some solution to the Riccati

equation such that A − KC is stable (Kailath et al., 2000, Table E.1). Evidently, de-

tectability is assured when A is a stable matrix, regardless of C. To gain further intuition

for the role of detectability, consider transforming St into “canonical variables” — as in

the literature on solving rational expectations models (Blanchard and Kahn, 1980; King

and Watson, 1998; Klein, 2000; Sims, 2002) — by premultiplying St with the matrix of

eigenvectors of A. Detectability then requires the signal equation (87) to have non-zero

loadings on all unstable canonical variables for a stabilizing solution to (86) to exist.23

In order to consider the role of unit-circle controllability, it is useful to define the fol-

lowing two matrices:24

23Specifically, let A = V ΛV −1 with Λ diagonal be the eigenvalue-eigenvector factorization of A so that
the columns of V correspond to the right eigenvectors of A. Define canonical variables SCt ≡ V −1St. The
signal equation can then be stated as Zt = CV SCt and detectability requires the signal equation to have
non-zero loadings on at least every canonical variable associated with an unstable eigenvalue in Λ.

24These transformation are designed to handle correlation between the shocks to signal and state equation
in (86) and (87), that arises when BD′ 6= 0.
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AC ≡ A−BD′ (DD′)−1C BC ≡ B
(
I −D′ (DD′)−1D)︸ ︷︷ ︸

MD

(93)

Notice that MD is a projection matrix, which is symmetric and idempotent, MD =

MDMD.25 In our particular case, with C = CA and D = CB, these expressions can be

transformed further into

AC = (I − PC)A and BC = (I − PC)B where PC ≡ BC ′
(
CBB′C

′
)−1

C. (94)

PC is a non-symmetric, idempotent projection matrix with CPC = C.26

DEFINITION 3 (Unit-circle controllability). The pair (AC ,BC) is unit-circle controllable

when no left-eigenvector of AC associated with an eigenvalue on the unit circle is orthogonal

to the column space of BC . That is, there is no non-zero row vector v such that vAC = vλ

with |λ| = 1 and vBC = 0.

THEOREM 1 (Stabilizing Solution to Riccati equation). Provided Assumption 1 holds,

a stabilizing and positive semi-definite solution to the Riccati equation (92) exists when

(AC ,BC) is unit-circle controllable and (A,C) is detectable. The steady-state Kalman

gain is such that A−KC is a stable matrix; moreover, the stabilizing solution is unique.27

Proof. See Theorem E.5.1 of Kailath et al. (2000); related results are also presented in

Anderson et al. (1996), or Chapter 4 of Anderson and Moore (1979).

In our context, with C = CA and D = CB, unit-circle controllability of (AC ,BC) is

equivalent to unit-circle controllability of (A(I − PC),B). To see this, let ṽ ≡ (I − PC)v

25To appreciate the role of MD, consider the following thought experiment: MD construct the residual
in projecting the shocks of the system off the shocks in the signal equation, wt − E(wt|Dwt) =MDwt.

26An idempotent matrix is equal to its own square, that is PC = PCPC , and the eigenvalues of an
idempotent matrix are either zero or one and we have |PC | = 0.

27There may be other, non-stabilizing positive semi-definite solutions.
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and note that left-eigenvectors of AC associated with eigenvalues on the unit circle cannot

be orthogonal to PC (otherwise we would have vAC = 0). Accordingly, vAC = vλ with

|λ| = 1, vBC 6= 0 and v 6= 0 is equivalent to ṽA(I − PC) = ṽλ with |λ| = 1, ṽ 6= 0

ṽB 6= 0 . A sufficient condition for this to hold is if B had full rank. Recall the definition

of B in (88) and let Bxε be a full-rank matrix, B will then be square and non-singular if

Bη,b has full rank, that is if every forward-looking variable is associated with a belief shock

component that is linearly independent from belief shocks associated with other forward-

looking variables.28

When the original setup has lagged endogenous variables amongst the vector of backward-

looking variables, Bxε will not be square and has only full column rank, but not row rank;

see also (46). In this case, unit-circle controllability depends also on unit-eigenvectors to

load on non-zero rows of Bxε; nevertheless controllability is more likely to be assured when

belief-shock loadings have full rank.

The Kalman filtering framework presented above is applicable for any shock-loadings

for the endogenous forecast errors, as encoded in B, irregardless of whether the projection

condition is satisfied or not. The projection condition discussed above requires that the

optimal Kalman gain satisfies29

[
Gyx −I

]Kx

Ky

 = 0 . (95)

where the Kalman gain K has been partitioned into

[
K ′x K ′y

]′
.

Before turning to a numerical procedure that identifies shock loadings that are admis-

sible under the projection condition, we summarize the equilibrium dynamics of the entire

economy for a given set of admissible shock loadings B.

28Note that linear independence only rules out perfect collinearity but not imperfect correlation between
the belief shock components affecting different forward-looking variables.

29Note that Gyx is pinned down by the full-information solution, which is certainty-equivalent and thus
independent of shock variances or the measurement loadings C.
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3.3.2 State space of equilibrium dynamics

Given a solution for the endogenous forecast errors as in (85), equilibrium dynamics of

the whole system are characterized by the evolution of central bank projections St|t and

projection residuals S∗t . Regarding the projections, S ′t|t =

[
X ′t Y ′t

]
, we need only track

X t|t since Y t|t = GX t|t. The state of the economy is described by the following vector:30

St ≡

 S∗t+1

X t+1|t+1

 =

(A−KC) 0

KXC P


︸ ︷︷ ︸

A

St−1 +

(B −KD)

KXD


︸ ︷︷ ︸

B

wt+1 (96)

Recalling that S∗t contains X∗t and Y ∗t , and X t|t contains Xt|t we can easily construct

Xt = X∗t +Xt|t and Y t = Y ∗t +GyX t|t and it = P iX t|t from the state vector St in (96).31

Notice that the transition matrix A of the joint system in (96) block-lower-triangular;

its eigenvalues are thus given by the eigenvalues of its diagonal blocks A−KC and P . As

established before, both of these blocks are stable matrices; as a result, A is stable.

3.3.3 Endogenous signal: A numerical solution

This section describes a numerical algorithm that searches for shock loadings Bηε and Bηb

and that satisfy the projection condition in the endogenous signal case. That is we assume

the measurement equation is characterized by

Zt = CxXt + Y t . (54)

By construction, we have Zt = Zt|t and thus Y ∗t = −CxX
∗
t , which can be used to simplify

the system a little further as follows:

30The projection dynamics for X t|t were given in (75) and we have Z̃t = CS∗t−1 +Dwt.
31Where Pi denotes the top block of P and thus Pi =

[
Pii Pix

]
as in (65).
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X̃t+1 = ÃX∗t + B̃wt+1 (97)

Z̃t+1 = C̃X∗t + D̃wt+1 (98)

with Ã = Axx −AxyCx (99)

B̃ =

[
Bxε 0

]
(100)

C̃ = Cx

(
Axx −AxyCx

)
+Ayx −AyyCx (101)

D̃ =

[
(CxBxε +Bηε) Bηb

]
(102)

where Axx, Axy, etc. denote suitable sub-matrices of A as known from (82).

For a given guess of D, the Kalman-filtering solution to this system generates a Kalman

gain Kx which can be used to form projections X̃t|t = KxZ̃t. What remains to be seen is

whether this guess also satisfies the projection condition. The projection condition requires

Ky = GyxKx. Together with the projection condition, the measurement equation (54)

implies I = CxKx +Ky =
(
Cx + Gyx

)
Kx. All told, we need to find shock loadings that

support a gainKx such that LKx = I where L = Cx+Gyx. We employ a numerical solver,

that searches for a D which generates a Kalman gain Kx such that LKx = I. Given a

solution for D that satisfies the projection condition LKx = I, we can then back out Bηε

and Bηb based on (102).

3.3.4 Exogenous signal: Analytic solution

In this section, we return to the exogenous-signal case presented in Section 3.1.2. Specif-

ically, we derive two results: First, we establish that the projection condition does not

restrict the belief shock loadings of the endogenous forecast errors when the signal is exoge-

nous. Second, we derive an analytical expression for the restrictions on the loadings of the

endogenous forecast errors on fundamental shocks resulting from the projection condition.

In order to derive an analytical solution for the endogenous forecast errors, we limit

attention to the case where the entire vector of backward-looking variables is exogenous;
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using notation introduced in Section 3.1.2, that means xt = Xt.

Stated in terms of innovations, the signal extraction problem is given by the following

system:

X̃t = AxxX
∗
t−1 +Bxεεt (103)

Z̃t = CxX̃t (104)

where Axx = Hxx, are appropriate sub-blocks of H and Bxε as given in (49). Applying

results from Section 3.3.1, a steady state Kalman filter exists with a unique gain matrix Kx

and positive semi-definite Var (X∗t ) provided that (Axx,Cx) are detectable and (Axx,Bxε)

are unit-circle controllable.32

Defining feature of the exogenous-signal case is that the signal extraction problem can be

solved independently from the dynamics of the forward-looking variables, Y t. In particular,

we have X∗t = (I −KxCx)X̃t and can thus write

X̃t = Axx(I −KxCx)X̃t−1 +Bxεεt (105)

Moreover, application of the projection condition also provides with a known Kalman

gain for the forward-looking variables: Ky = GyxKx and the innovation dynamics of the

forward-looking variables are restricted by the following transition equation:

Ỹ t+1 = Ayx(I −KxCx)X̃t−1 +Ayy(I −KyCx)Ỹ t−1 + ηt+1 (106)

where the endogenous forecast errors, ηt, remain to be derived. As before, we seek ηt =

Bηε εt + Bηb bt, with loadings Bηε and Bηb bt that satisfy the projection condition. In

addition, in order to ensure stable dynamics of Ỹ t, Ayy(I − KyCx) has to be a stable

32Analogously to derivation shown in Section 3.3.1, application of Theorem 1 requires to transform (103)
and (103) into “ABCD” form and establish detectability and unit-circle controllability with respect to
matrices derived from the transformed system. However, those conditions turn out to be identical to requiring
detectability of (Axx,Cx) and unit-circle controllability of (Axx,Bxε).
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matrix.33

The projection condition requires Cov (Ỹ t, Z̃t) = Gyx Cov (X̃t, Z̃t). Due to the exo-

geneity of Z̃t — and thus Cov (bt, Z̃t) = 0 — this covariance restriction does not affect

admissible belief shock loadings Bηb.

PROPOSITION 1 (Unrestricted belief-shock loadings when the signal is exogenous). When

the signal is exogenous, as given by (103) and (104), there are no restrictions on Bηb for

an equilibrium as defined above to exist.

Proof. Formally, we can decompose Ỹ t into two pieces: a component that reflects the

history of fundamental shocks εt and a component driven by belief shocks.

Ỹ t+1 = Ỹ
ε
t+1 + Ỹ

b
t+1 (107)

Ỹ
ε
t+1 ≡ Ayx(I −KxCx)X̃t−1 +Ayy(I −KyCx)Ỹ

ε
t−1 +Bηεεt+1 (108)

Ỹ
b
t+1 ≡ Ayy(I −KyCx)Ỹ

b
t−1 +Bηbbt+1 (109)

and since, for any h, we have E(bt+h|Z̃t) = 0 it follows have E(Ỹ t|Z̃t) = 0 for any Bηb.

(Further requirements for the existence of an equilibrium as described in Definition 1 are the

stability of Ayy(I−KyCx) and fundamental shock loadings Bηε that satisfy the projection

condition. However, satisfaction of those conditions does not depend on Bηb.)

Without proof, notice that the result also goes through, when part of the backward-

looking variables were endogenous (while the signal remains exogenous).

Finally, we can also state simple expressions to construct fundamental shock loadings

Bηε that satisfy the projection condition. Notice that the projection condition requires

Cov (W̃ t, Z̃t) = 0 where W̃ t ≡ Ỹ
ε
t − GyxX̃t. (In light of Proposition 1, we can neglect

the effects of belief shocks and W̃ t has been defined with reference to Ỹ
ε
t , as defined in the

proof to Proposition 1.)

33Please note that existence of a steady-state Kalman filter for (103) and (104) assures stable dynamics
of X̃t.
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Let Σwx ≡ Cov (W̃ t, X̃t). Based on (103) and (106), and with Awx = Ayx − GyxAxx,

the dynamics of W̃ t are given by

W̃ t+1 = Awx(I −KxCx)X̃t−1 +Ayy(I −KyCx)W̃ t−1 + (Bηε − GyxBxε)εt+1 (110)

Σwx =
{
Awx(I −KxCx)Σxx +Ayy(I −KyCx)Σwx

}
(I −KxCx)′A′xx

+ (Bηε − GyxBxε)B
′
xε (111)

where Σxx = Var (X̃t) is known from solving the steady-state Kalman filter for the exoge-

nous signal case. The only unknowns in (111) are Σwx and Bηε and we seek to find Bηε

such that ΣwxC
′
x = 0.

Valid values of Σwx must lie in the nullspace of C
′
x. Specifically, given a (Nx−Nz)×Nx

matrix N such that NC
′
= 0.34 we can construct valid candidates for Σwx by choosing an

arbitrary Ny × (Nx −Nz) matrix G and let Σwx = GN .

For a given candidate Σwx = GN , Bηε must thus satsfy the following condition:

BηεB
′
xε = f(G) (112)

where f(G) ≡ GN + GyxBxεB
′
xε − (Awx(I −KxCx)Σxx(I −KxCx)′A′xx

−Ayy(I −KyCx)GN(I −KxCx)′A′xx (113)

The ability to solve (112) for Bηε depends on the dimension of the problem. When

Nx = Nε, the number of exogenous variables is identical to the number of exogenous shocks,

and Bxε is invertible. When |Bxε| 6= 0 it is straightforward to solve (112) for Bηε given an

arbitrary choice of G:

Bηε = f(G)(B′xε)
−1 . (114)

34A matrix N such that NC
′

= 0 can readily be obtained from the SVD decomposition of C = USV ′

where U and V are orthonormal, S =
[
S1 0

]
and S1 is a Nz × Nz diagonal matrix. Partition V

conformably into V =
[
V 1 V 2

]
such that C = US1V

′
1. Since V is orthonormal we have V ′2V 1 = 0.

Choosing N = V ′2 then ensures NC
′

= 0.
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In case of Nx > Nε, there is not necessarily a Bηε that solves (112) for any G. Instead,

G needs to be chosen such that f(G)
(
I −Bxε(B

′
xεBxε)

−1B′xε
)

= 0, which can be obtained

numerically.35 For such a choice of G, a valid Bηε is given by Bηε = f(G)Bxε(B
′
xεBxε)

−1.

3.4 Variance Bound in the General Case

In our description of the Fisher-economy example in Section 2, we have highlighted the exis-

tence of an upper bound on the variance of endogenous variables (inflation in that example)

that holds across all of the equilibria considered. Here, we show how these arguments can

be extended to the general case.

Specifically, analogously to the example from Section 2, we consider the following case

of an endogenous signal, where the measurement vector conveys a noisy signal about the

vector of forward-looking variables:

Zt = Y t + νt νt ∼ N(0,Ωνν) (115)

where νt is a vector of iid measurement errors. In terms of our general framework, laid

out above, these measurement errors would usually be tracked as part of the vector of

backward-looking variables, Xt, and (115) can be recognized as a special case of (54). To

facilitate the derivation of the variance bound, partition the vector of backward-looking

variables into Xt =

[
x′t ν ′t

]′
where xt denotes the backward-looking variables present in

the full-information version of a given model. As the measurement errors have no role in the

full-information version of the model, the projection condition reduces to Y t|t = Gyx xt|t.36

Furthermore, as in the Fisher-economy example of Section 2, consider the case where

the backward-looking variables are purely exogenous, that is xt = Hxxxt−1 + Bxεεt,

εt ∼ N(0, I), and Var (xt) is given independently from any particular equilibrium for the

endogenous variables.37

35Note that, as introduced in Section 3.1, Bxε has full-column rank which ensures that |B′xεBxε| 6= 0.
36In a slight abuse of notation, we continue to use Gyx — as introduced in equation (64) above — when

referring to the coefficients mapping xt — rather than Xt — into the vector of endogenous variables.
37Given values for Hxx and Bxε, and requiring that Hxx be stable, Var (xt) is given by the solution to a
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By construction, we have Zt|t = Zt and can thus deduce that Y ∗t = −ν∗t .38 Together

with the projection condition (80) and the law of total variance, we then obtain:

Y t = Gyx xt|t − ν∗t (116)

⇒ Var (Y t) = Gyx Var (xt|t) G′yx + Var (ν∗t ) (117)

⇒ Var (Y t) ≤ Gyx Var (xt) G′yx + Var (νt) (118)

where the weak inequality is understood as indicating a semi-definite difference between ma-

trices. The absence of covariance terms in (117) follows from the optimality of projections,

which requires projection residuals, like ν∗t to be orthogonal to Zt or any functions thereof

(like xt|t). In addition, the law of total variance implies Var (xt) = Var (xt|t)+Var (xt|Zt) ≥

Var (xt|t) and an analogous expression for Var (νt).

However, in contrast to the simple Fisher example, where πt = ḡrt− νt was also a valid

equilibrium, its analogue in the general case — given by Y B
t ≡ Gyxxt− νt — will typically

not be a possible outcome in equilibrium. Nevertheless, (118) provides an upper bound on

the variability of equilibria for Y t across all potential equilibria in our environment. To

demonstrate why Y B
t is generally not an equilibrium outcome, we consider the following,

simplified version of the general setup known from (49), together with the signal given

by (115):

xt+1 = Hxxxt +Bxεεt+1 (119)

EtY t+1 = Hyxxt +HyxY t + Ĥyxxt|t + ĤyxY t|t (120)

Zt = Y t + νt, νt ∼ N(0,Ωνν) (115)

We proceed by showing that evaluation of (115) using the guess Y B
t ≡ Gyxxt − νt yields a

contradiction: The left-hand side of (115) becomes a function of xt alone, while the right

Lyapunov equation, Var (xt) = Hxx Var (xt)H
′
xx+BxεB

′
xε, which can be obtained using standard methods

(Sargent and Ljungqvist, 2004; Hamilton, 1994).
38Asterisks continue to denote projection residuals Y ∗t ≡ Y t − Y t|t and ν∗t ≡ νt − νt|t.
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hand-side becomes a function of xt, xt|t and νt:

GyxHxx xt
?
= (Hyx +HyxGyx)xt +

(
Ĥyx + ĤyxGyx

)
xt|t − Ĥyyνt (121)

However, together with (115), the candidate Y B
t implies that the signal becomes a function

of xt alone, Zt = Gyxxt, so that the projections xt|t are independent from νt.
39 A necessary

condition for (121) to hold would thus be to require that Hyy = 0, which was indeed the

case in the simple Fisher example.40 However, in general, Hyy is not zero, as illustrated,

for example, in the case of the New Keynesian model analyzed in Section 4.

3.5 Determinate outcomes from a different rule

So far, we considered only reaction functions for the policy instrument that, as in (50),

respond to optimal projections of backward- and forward-looking variables. Rules of this

form could, for example, be motivated by noting that a given rule was deemed desirable

under full information and pointing to a certainty equivalence argument. Indeed, based on

reasoning along those lines, Svensson and Woodford (2004) derive optimal reactions in a

form consistent with (50). A central message of this paper, is to note that the interaction of

the policymaker’s filtering and private-sector agents’ forward looking behavior, embodied

by the linear difference system in (49), lead to a multiplicity of equilibria that is general

inherent in the class of models studied here. In particular, rules of the form in (50) commit

the policymaker only in her responses to projected input variables, but not in her responses

to incoming data. Responses to incoming data are rather governed by the policymakers

filtering efforts, which depend on equilibrium outcomes, and — sadly for the purpose of

achieving uniqueness — end up stabilizing many possible equilibria.

This section describes an alternative class of policy rules, that satisfies the same (if

39Notice that in (121), we also imposed the projection condition on the candidate outcome Y B
t|t = Gyxxt|t

as required in equilibrium. Even in the absence of the equilibrium condition holding, projections Y B
t|t would,

however, be a function of xt alone and independent of νt.
40In the Fisher example, (120) collapses to a combination of the Fisher equation and the Taylor rule,

Etπt+1 = φπt|t − rt, which does not feature the current value of the forward-looking variable πt.
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not easier) informational requirements as (50), while also achieving unique equilibrium

determinacy. An example of such a rule has already been described in the context of our

Fisher-economy example in Section 2. In this case, the reaction function of the policy instru-

ment responds directly to incoming data, as captured by Zt (and possibly also lags thereof)

instead of projections, which are an endogenously determined function of Zt. Specifically,

we generalize the specific example from Section 2, to an environment that maintains the

following features:

1. In the full-information case, the policy rule responds only to forward-looking variables.

it = Φiit−1 + ΦyY t (122)

An example of such a rule are outcome-based Taylor rules, while policy rules with

stochastic intercept are excluded.

2. Forward-looking behavior of the private sector is characterized by an expectational

difference system similar to (49) except that — for simplicity — central-bank projec-

tions are assumed to enter only via the policy rule, that is:

JEtSt+1 = HSt +H iit |J | 6= 0 (123)

where St continues to denote the stacked vector of backwar- and looking variables.

3. As before, we assume the values of the policy-rule coefficients Φi and Φy to be such

that, when the reaction function (122) is combined with the difference system in (123),

there is a unique full-information rational expectations equilibrium.

4. As in our discussion of the variance bounds in the general case, the measurement

vector is supposed to convey a noisy signal of every forward-looking variable.

Zt = Y t + νt νt ∼ N(0,Ωνν) (115)
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For simplicity, we continue to assume that νt is serially uncorrelated, though equilib-

rium uniqueness will not depend on this property.

When the policymaker can only observe the history of Zt instead of Y t and Xt, the

rule (122) cannot be implemented by the policymaker. Instead of evaluating the rule using

optimal projections of Y t onto Zt, a policymaker could also consider to simply replace Y t

by its noisy signal. That is, the policymaker could set the policy instrument according to

it = Φiit−1 + Φy (Y t + νt) . (124)

The economy is then described by the expectational difference system (123) and the pol-

icy rule (124). Importantly, equilibrium does not hinge on any signal extraction efforts and

its determination can be studied using the standard methods — developed, among others,

by Blanchard and Kahn (1980), King and Watson (1998), Klein (2000) and Sims (2002)

— described above in the context of the full-information case. In particular, notice that

the full-information system described by (123) and (122) differs only from the “signal-rule

system”, described by (123) and (124), only in the presence of additional, exogenous driv-

ing variables given by νt, while sharing an identical transmission of endogenous variables.

Since we assumed that the the full-information system given by (123) and (122) satisfies

the conditions for a unique equilibrium, it follows directly that the “signal-rule system”,

described by (123) and (124), also generates a unique equilibrium. In particular, using no-

tation introduced above in our characterization of full-information outcomes for the general

case, equilibrium outcomes have the following form:

Y t = GyxXt + Gyiit−1 + Gyννt (125)

EtXt+1 = PxxXt +Pyiit−1 +Pxννt (126)

where Gyx, Gyi, Pxx, Pyi take identical values as in the full-information solution.41

41Alternatively stated, the full-information outcomes are identical to (125) and (126), with identical coef-
ficient values, except for Gyν and Pxν being equal to zero.
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While the ability to achieve equilibrium uniqueness might seem, at least initially. We

should caution, that the dependence of endogenous outcomes on signal noise in (125)

and (126) can lead to potentially highly undesirable fluctuations caused by measurement

noise. Effectively, while maintaining the requirement that policy can only respond to ob-

servables spanned by Zt, determinacy is achieved under the “signals rule” by committing

the policy rule respond to incoming noise with the same sensitivity as it does to Y t. In

particular, in the context of the Fisher-example described in Section 2, we had the case

where Gyν = 0 and Xt was purely exogenous. With this particular configuration, the vari-

ance bounds established above indicates that any admissible equilibrium under the corre-

sponding projections-based policy rule, that is it = Φiit−1 +ΦyY t|t, generates less-variable

outcomes.42

Our argument could even be extended beyond the setting laid out above — for ex-

ample by replacing policy rule responses to backward-looking variables or expectations of

future realizations of forward-looking variables by noisy signals of those without altering

our conclusions (albeit at the cost of further notational complexity).

42Specifically, with Var (Y t) ≤ Gyx Var (Xt)G′yx+ Var (νt) the difference between the variance-covariance
matrix of outcomes for the forward-looking variables under the projection-based rule and its counterpart
generated by the signal-based rule is positive semi-definite; so that any quadratic loss function over Y t would
at least weakly prefer outcomes under the projections-based rule.
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4 A New Keynesian Model

Next we turn to the numerical solution of a 3 equation New Keynesian model. The model

consists of a household that has the same information set as households in the full informa-

tion version of the model as well as a central bank that only observes noisy measurements

of inflation and the level of real GDP. Throughout this section we assume that the central

bank follows a monetary policy rule in which it reacts to (Among other variables) its best

estimate of inflation and the output gap. Thus the central bank not only has to infer the

true level of output from its noisy signal, but it faces a possibly even more difficult signal

extraction problem because it has to infer the best estimate of the output gap the available

data. In our version of the New Keynesian models, we posit that the log difference in po-

tential GDP ȳt is a stationary AR(1) process, which makes the real rate rt in this economy

a linear function of the expected log difference in potential output. We also introduce a

cost-push shock ut as well as the two measurement errors in inflation and the level of out-

put. To calibrate the model, we have chosen standard parameters in the literature where

possible. To calibrate the standard deviation of the iid measurement error process, we have

relied on estimates from Lubik & Matthes (2016). In that paper the authors estimate mea-

surement error processes for inflation and real GDP growth that are AR(1) processes. For

inflation, we choose the standard deviation of our measurement error process to math the

unconditional standard deviation for the inflation measurement error process in Lubik &

Matthes (2016). Since the measurement error in inflation is estimated to be only mildly

autocorrelated in that paper (with a point estimate of around 0.1 for the AR coefficient)

the switch from an autoregressive measurement error process to an iid one seems innocuous.

For real GDP, we assume that the level of (log) GDP is measured with iid error. Note that

this automatically induces autocorrelation in the measurement error for the log difference

of GDP, which is what Lubik & Matthes (2016) find. In that case the standard deviation

of the measurement error in the log difference will be twice the standard deviation of the

measurement error in levels, which we exploit in our calibration. We match the standard
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deviation of our iid measurement error to half of the unconditional standard deviation of the

measurement error for GDP growth found in Lubik & Matthes (2016). Standard deviations

of all shocks are expressed in annualized percentages.

Below we give the equations for our model (except for the filtering equations, which we

do not repeat here for the sake of brevity) and a table with the exact numerical values of

parameters. The model is reasonably standard, but nonetheless some elements are worth

pointing out: The model includes a New Keynesian Phillips curve with a backward-looking

component for inflation γπt−1. The central bank follows a policy rule that reacts to filtered

estimates of inflation and the output gap xt. The frictionless real rate rt is a linear function

of expected growth in potential real GDP. Finally, the level of GDP in this economy is by

construction equal to the growth rate in potential GDP plus the sum of lagged potential

GDP and the current output gap.

(1− γβ)πt = γπt−1 + βEtπt+1 + κxt (127)

it = rt + Etπt+1 + σ(Etxt+1 − xt) (128)

it = φππt|t + φxxt|t (129)

rt = σEt∆ȳt+1 (130)

∆ȳt = ρy∆ȳt−1 + εyt εyt ∼ N(0, σ2y) (131)

ut = ρuut−1 + εut εut ∼ N(0, σ2u) (132)

Zt =

 πt + νπt

∆ȳt + ȳt−1 + νyt + xt


νπt
νxt

 ∼ N
0,

σ2π 0

0 σ2x


 (133)
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Figure 1: Impulse responses for the New Keynesian model under full information (blue)
as well as various limited information equilibria. Each row represents the response of a
specific variable to the shocks in the model whereas each column represent the responses of
the endogenous variables to a specific shock.

Table 1: Parameters for NK model
Parameter Value

β 0.99
σ 1.00
φ 1.00
γ 0.25
θ 0.75
φπ 2.50
φx 0.50
ρy 0.75

σy 0.30
σπ 0.80
σx 1.39
κ (1− θ)(1− βθ)/θ(σ + φ) = 0.17
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Figure 2: Moments of endogenous variables for the New Keynesian model under full infor-
mation (blue) as well as various limited information equilibria.
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5 Conclusion

[TO BE WRITTEN]
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