Job Search under Debt:
 Aggregate Implications of Student Loans

Yan Ji

HKUST Workshop on Macroeconomics, June 14-15, 2017

Student loans are large and rising

- Lively discussed during the presidential campaign.
- What is the implication on labor market outcomes?

Student loans are changing the job hunt

- Indebted students conduct inadequate job search.

Student loans are changing the job hunt

- Indebted students conduct inadequate job search.
- Mechanism is general, but focus on student loans because:
- Most loans are financed by the government.
- Quantitatively large: limited credit access + $\underbrace{\text { fixed repayment plan }}$.
15% of take-home salary

Student loans are changing the job hunt

- Indebted students conduct inadequate job search.
- Mechanism is general, but focus on student loans because:
- Most loans are financed by the government.
- Quantitatively large: limited credit access + $\underbrace{\text { fixed repayment plan }}$.
15% of take-home salary
- The income-based repayment plan (IBR):
- Payments proportional to income and debt forgiveness.

Student loans are changing the job hunt

- Indebted students conduct inadequate job search.
- Mechanism is general, but focus on student loans because:
- Most loans are financed by the government.
- Quantitatively large: limited credit access + f $\underbrace{\text { fixed repayment plan }}$.
15% of take-home salary
- The income-based repayment plan (IBR):
- Payments proportional to income and debt forgiveness.
- Methodology: Develop and estimate an equilibrium life-cycle model with college entry and job search.

Overview of model and main results

Fixed repayment plan: Wage income and productivity of young borrowers are 4.2% and 2.9% lower

Overview of model and main results

Fixed repayment plan: Wage income and productivity of young borrowers are 4.2% and 2.9% lower

Overview of model and main results

GENERAL EQUILIBRIUM
IBR increases the welfare of youth by 2.4%

Fixed repayment plan: Wage income and productivity of young borrowers are 4.2% and 2.9% lower

Related literature

- Risk and liquidity channels of job search
- Danforth (1979); Acemoglu, Shimer (1999); Chetty (2008); Herkenhoff, Phillips, Cohen-Cole (2016); etc.
- Student loans and income-based repayment plans
- Abbott et al. (2016); Stiglitz, Higgins and Chapman (2014); Dearden et al (2008); Ionescu (2009); Mattana, Joensen (2014); Joensen and Mattana, 2016; etc.
- Household debt and labor market outcomes.
- Aggregate demand: Eggertsson, Krugman (2012); Mian, Sufi (2014);
- Risk shifting: Donaldson, Piacentino, Thakor (2016);
- (Non-)Wage tradeoff: Rothstein, Rouse (2011); Luo, Mongey (2016).
- Quantitative search models of labor market.
- Krusell, Mukoyama, Sahin (2010); Lise, Meghir, Robin (2015); Bagger, et al.(2014); Herkenhoff et al. (2016); etc.

Road map

- Quantitative model
- Data and Estimation
- Quantitative analysis
- Conclusion

College entry and borrowing

- OLG, each generation lives for T periods.
- At time 0 , agents draw initial wealth b_{0} and talent a from $\mho\left(a, b_{0}\right)$.

College entry and borrowing

- OLG, each generation lives for T periods.
- At time 0 , agents draw initial wealth b_{0} and talent a from $\mho\left(a, b_{0}\right)$.
- Decide whether to enter college after realizing
- A monetary cost k from $\Pi(k)$.
- Wealth constrained (i.e., $b_{0}<k$) borrow $k-b_{0}$ student debt
- A non-monetary utility benefit/cost e from $\Upsilon(e)$.

College entry and borrowing

- OLG, each generation lives for T periods.
- At time 0 , agents draw initial wealth b_{0} and talent a from $\mho\left(a, b_{0}\right)$.
- Decide whether to enter college after realizing
- A monetary cost k from $\Pi(k)$.
- Wealth constrained (i.e., $b_{0}<k$) borrow $k-b_{0}$ student debt
- A non-monetary utility benefit/cost e from $\Upsilon(e)$.
- College study increases labor productivity

$$
z(a, n, t)=A_{n} a g(t)
$$

- $A_{2}-A_{1}$ reflects college premium, $g(t)=\mu_{0}+\mu_{1} t+\mu_{2} t^{2}+\mu_{3} t^{3}$.

College entry and borrowing

- OLG, each generation lives for T periods.
- At time 0 , agents draw initial wealth b_{0} and talent a from $\mho\left(a, b_{0}\right)$.
- Decide whether to enter college after realizing
- A monetary cost k from $\Pi(k)$.
- Wealth constrained (i.e., $b_{0}<k$) borrow $k-b_{0}$ student debt
- A non-monetary utility benefit/cost e from $\Upsilon(e)$.
- College study increases labor productivity

$$
z(a, n, t)=A_{n} a g(t)
$$

- $A_{2}-A_{1}$ reflects college premium, $g(t)=\mu_{0}+\mu_{1} t+\mu_{2} t^{2}+\mu_{3} t^{3}$.
- College decision is made to maximize utility.

Labor market

- Workers have GHH preference:

$$
u\left(c_{t}, l_{t}\right)=\frac{1}{1-\gamma}\left(c-\phi \frac{l^{1+\sigma}}{1+\sigma}\right)^{1-\gamma}
$$

Labor market

- Workers have GHH preference:

$$
u\left(c_{t}, l_{t}\right)=\frac{1}{1-\gamma}\left(c-\phi \frac{l^{1+\sigma}}{1+\sigma}\right)^{1-\gamma}
$$

- Firms pay vacancy cost ν to create jobs with productivity ρ drawn from $F(\rho)$; No productivity shocks.

Labor market

- Workers have GHH preference:

$$
u\left(c_{t}, l_{t}\right)=\frac{1}{1-\gamma}\left(c-\phi \frac{l^{1+\sigma}}{1+\sigma}\right)^{1-\gamma}
$$

- Firms pay vacancy cost ν to create jobs with productivity ρ drawn from $F(\rho)$; No productivity shocks.
- Matched worker-job pair produces a flow of output

$$
F=z(a, n, t) \rho l .
$$

Matching

- Aggregate search effort

$$
H \equiv h^{u} \bar{u} T+h^{e}(1-\bar{u}) T .
$$

Matching

- Aggregate search effort

$$
H \equiv h^{u} \bar{u} T+h^{e}(1-\bar{u}) T .
$$

- Total number of meetings

$$
M=\chi H^{\omega} N_{v}^{1-\omega} .
$$

Matching

- Aggregate search effort

$$
H \equiv h^{u} \bar{u} T+h^{e}(1-\bar{u}) T .
$$

- Total number of meetings

$$
M=\chi H^{\omega} N_{v}^{1-\omega} .
$$

- Contact rates:
- Unemployed: $\lambda^{u}=h^{u} M / H$; Employed: $\lambda^{e}=h^{e} M / H$.
- Vacancies: $q=M / N_{v}$.

Matching

- Aggregate search effort

$$
H \equiv h^{u} \bar{u} T+h^{e}(1-\bar{u}) T .
$$

- Total number of meetings

$$
M=\chi H^{\omega} N_{v}^{1-\omega} .
$$

- Contact rates:
- Unemployed: $\lambda^{u}=h^{u} M / H$; Employed: $\lambda^{e}=h^{e} M / H$.
- Vacancies: $q=M / N_{v}$.
- Matches formed if exists w, s.t. $W(.) \geq U(),. J()>$.0 .
- Matches break up exogenously at rate κ.

Wage negotiation with unemployed workers

- Unemployed workers receive UI benefits θ.

Wage negotiation with unemployed workers

- Unemployed workers receive UI benefits θ.
- Wage rate is negotiated through Nash bargaining:

$$
w^{u}(\Omega, \rho)=\underset{w}{\arg \max }[W(\Omega, \rho, w)-U(\Omega)]^{\xi} J(\Omega, \rho, w)^{1-\xi} .
$$

Wage negotiation with unemployed workers

- Unemployed workers receive UI benefits θ.
- Wage rate is negotiated through Nash bargaining:

$$
w^{u}(\Omega, \rho)=\underset{w}{\arg \max }[W(\Omega, \rho, w)-U(\Omega)]^{\xi} J(\Omega, \rho, w)^{1-\xi} .
$$

- The maximal employment value that job ρ can offer:

$$
\bar{W}(\Omega, \rho) \equiv W(\Omega, \rho, z \rho)
$$

- $\rho_{u}(\Omega)$ is the reservation productivity:

$$
\bar{W}\left(\Omega, \rho_{u}(\Omega)\right)=U(\Omega)
$$

- Mechanism: higher s results in lower ρ_{u}.

On-the-job search

- If worker Ω in job ρ^{\prime} and wage w^{\prime}, poached by vacancy ρ.
- Bertrand competition (Postel-Vinay and Robin, 2002).
- Case 1: $\bar{W}(\Omega, \rho) \leq W\left(\Omega, \rho^{\prime}, w^{\prime}\right)$, nothing changes.
- Otherwise,
- Case 2: $\rho>\rho^{\prime}$, transfer to ρ, negotiation benchmark is ρ^{\prime}.

$$
w^{e}\left(\Omega, \rho, \rho^{\prime}\right)=\underset{w}{\arg \max }\left[W(\Omega, \rho, w)-\bar{W}\left(\Omega, \rho^{\prime}\right)\right]^{\xi} J(\Omega, \rho, w)^{1-\xi}
$$

- Case 3: $\rho \leq \rho^{\prime}$, stay in ρ^{\prime}, negotiation benchmark is ρ.

$$
w^{e}\left(\Omega, \rho^{\prime}, \rho\right)=\underset{w}{\arg \max }\left[W\left(\Omega, \rho^{\prime}, w\right)-\bar{W}(\Omega, \rho)\right]^{\xi} J\left(\Omega, \rho^{\prime}, w\right)^{1-\xi}
$$

Repayment plans

- Consider fixed interest rate r^{s} for simplicity.

Repayment plans

- Consider fixed interest rate r^{s} for simplicity.
- Fixed repayment plan

$$
y_{t}^{f i x}=\frac{r^{s}}{\left(1+r^{s}\right)\left[1-\frac{1}{\left(1+r^{s}\right)^{10-(t-1)}}\right]} s_{t}, \quad \text { for } t<=10
$$

Repayment plans

- Consider fixed interest rate r^{s} for simplicity.
- Fixed repayment plan

$$
y_{t}^{f i x}=\frac{r^{s}}{\left(1+r^{s}\right)\left[1-\frac{1}{\left(1+r^{s}\right)^{10-(t-1)}}\right]} s_{t}, \quad \text { for } t<=10 .
$$

- IBR

$$
y_{t}^{i b r}=\min \left(0.15 \max \left(w_{t} l_{t}-\operatorname{pov}, 0\right), \quad y_{1}^{f i x}, \quad s_{t}\right), \quad \text { for } t<=25
$$

Default and taxes

- Agents can default at cost η, which delays repayment by one year.

Default and taxes

- Agents can default at cost η, which delays repayment by one year.
- Face progressive income taxes (Benabou, 2002):

$$
\tilde{E}=\varkappa(w l)^{1-\tau} .
$$

Default and taxes

- Agents can default at cost η, which delays repayment by one year.
- Face progressive income taxes (Benabou, 2002):

$$
\tilde{E}=\varkappa(w l)^{1-\tau} .
$$

- Taxes used to finance UI and non-valued government spending:

$$
(1-\bar{u}) T \iint w l\left[1-\varkappa(w l)^{-\tau}\right] d \Phi^{e}(\Omega, \rho)=\bar{u} T \int \varkappa \theta^{1-\tau} d \Phi^{u}(\Omega)+G .
$$

Stationary competitive equilibrium

- The stationary competitive equilibrium consists of stationary distributions of unemployed agents, $\Phi^{u}(\Omega)$, employed agents $\Phi^{e}(\Omega, \rho)$, vacancies $V(\rho)$, the number of vacancies N_{v} and unemployment rate \bar{u}, such that:
(1). Job contact rates are determined by meeting technology.
(2). Agents optimally make consumption, labor supply, and default decisions depending on default status. ©iming value functions
(3). Wage rates are determined by Nash bargaining.
(4). N_{v} and $V(\rho)$ are determined by the free entry condition.
- Expected value of creating a vacancy is equal to ν. formula
(5). \bar{u} is determined by equilibrium flow equation:

$$
(1-\bar{u}) \kappa=\bar{u} \lambda^{u}\left[\int\left[1-V\left(\rho_{u}^{d}\right)\right] \phi^{u}(\Omega, 1) d \Omega+\int\left[1-V\left(\rho_{u}\right)\right] \phi^{u}(\Omega, 0) d \Omega\right] .
$$

Data and Parametrization

- NLSY97, sample period 1997-2013.
- 1721 high school and 1261 college graduates (60% are borrowers).

Data and Parametrization

- NLSY97, sample period 1997-2013.
- 1721 high school and 1261 college graduates (60% are borrowers).
- Parametrization
- $b_{0} \sim \operatorname{Pareto}(\underline{b}, \zeta, \varphi), z \sim \operatorname{Beta}\left(f_{1}^{a}, f_{2}^{a}\right)$, correlation ϑ.
- $\rho \sim \operatorname{Beta}\left(f_{1}^{\rho}, f_{2}^{\rho}\right)$.
- $k \sim \operatorname{Truncated}-\operatorname{Normal}\left(\mu_{k}, \sigma_{e}^{2}\right)$ and $e \sim \operatorname{Normal}\left(\mu_{k}, \sigma_{e}^{2}\right)$

Model fit

Model fit

Model fit

Labor Market Moments	Model	Data
Mean of wage income among high school graduates in first 5 years	$\$ 26,364$	$\$ 26,736$
Mean of wage income among college graduates in first 5 years	$\$ 40,354$	$\$ 40,619$
Mean of employment duration (year)	2.2	2.2
Mean of unemployment duration (week)	27.2	27.2
Mean of job tenure (year)	1.5	1.5
Variance of log wage income	0.180	0.155
Skewness of log wage income	0.068	-0.174
Mean of log wage increase upon job-to-job transitions	0.132	0.150
Variance of log wage increase upon job-to-job transitions	0.023	0.042
Vacancy to unemployment ratio	0.409	0.409
Average hours worked per year	1,731	1,729
College and Debt Moments	Model	Data
Fraction of agents with a bachelor's degree	41.4%	42.2%
Unexplained variance in college entry decisions $\left(1-R^{2}\right)$	0.64	0.64
Correlation between talent and student debt	0.05	0.04
Default rate	9.65%	9.26%

Comparing regression coefficients and elasticities

	Uemp. dur. First spell	First year	Wage income Second year	Third year
Actual data				
"Impact" coefficient	-2.08***	-2,067**	-2,152**	-2,619**
Standard error	(0.68)	(890)	(865)	$(1,309)$
Simulated data				
"Impact" coefficient	-1.83**	-2,411**	-2,122*	-1,810*
Standard error	(0.70)	(914)	$(1,254)$	$(1,121)$
Chow test p-value	0.81	0.83	0.85	0.83

Comparing regression coefficients and elasticities

	Uemp. dur. First spell	First year	Wage income Second year	Third year
Actual data	$-2.08^{* * *}$	$-2,067^{* *}$	$-2,152^{* *}$	$-2,619^{* *}$
"Impact" coefficient	(0.68)	(890)	(865)	$(1,309)$
Standard error				
Simulated data	$-1.83^{* *}$	$-2,411^{* *}$	$-2,122^{*}$	$-1,810^{*}$
"Impact" coefficient	(0.70)	(914)	$(1,254)$	$(1,121)$
Standard error	0.81	0.83	0.85	0.83
Chow test p-value				

	Model	Micro Estimates	Source
UI on unemp. dur.	0.50	$0.35-0.9$	Card et al. (2015)
UI on res. wage	6.4%	4%	Feldstein and Poterba (1984)
Credit on unemp. dur.	0.7 weeks	$0.15-3$ weeks	Herkenhoff et al. (2015)
Credit on reemploy. wage	1.4%	$0.8 \%-1.7 \%$	Herkenhoff et al. (2015)

Average effects on young borrowers (ages 23-32)

- Focus on partial equilibrium
- No change in college entry and borrowing decisions.
- No change in firms job posting decisions

	Non	Normalized borrowers			Difference
	-borrowers	FIX	IBR	IBR $\left(w_{F I X}^{*}\right)$	IBR-FIX
Compensation (\$)	N/A	6,274	3,003	4,214	$-3,271$
Unemp. dur.	23.8	22.0	23.4	22.4	1.4
(week)		(-7.6%)	(-1.7%)	(-5.9%)	(5.9%)
Match quality	0.836	0.812	0.826	0.813	0.014
		(-2.9%)	(-1.2%)	(-2.8%)	(1.7%)
Wage income	47,697	45,689	46,586	45,121	897
(\$)		(-4.2%)	(-2.3%)	(-5.4%)	(1.9%)
Output	60,235	57,976	58,756	56,862	780
(\$)		(-3.8%)	(-2.5%)	(-5.6%)	(1.3%)
Labor supply	1,737	1,724	1,711	1,695	-13
(hour)		(-0.7%)	(-1.5%)	(-2.4%)	(-0.8%)

Average effects on young borrowers (ages 23-32)

- Focus on partial equilibrium
- No change in college entry and borrowing decisions.
- No change in firms job posting decisions

	Non-borrowers	Normalized borrowers			Difference
		FIX	IBR	$\operatorname{IBR}\left(w_{F I X}^{*}\right)$	IBR-FIX
Compensation (\$)	N/A	6,274	3, 003	4,214	-3,271
Unemp. dur. (week)	23.8	$\begin{gathered} 22.0 \\ (-7.6 \%) \end{gathered}$	$\begin{gathered} 23.4 \\ (-1.7 \%) \end{gathered}$	$\begin{gathered} 22.4 \\ (-5.9 \%) \end{gathered}$	$\begin{gathered} 1.4 \\ (5.9 \%) \end{gathered}$
Match quality	0.836	$\begin{gathered} 0.812 \\ (-2.9 \%) \end{gathered}$	$\begin{gathered} 0.826 \\ (-1.2 \%) \end{gathered}$	$\begin{gathered} 0.813 \\ (-2.8 \%) \end{gathered}$	$\begin{gathered} 0.014 \\ (1.7 \%) \end{gathered}$
Wage income (\$)	47,697	$\begin{aligned} & 45,689 \\ & (-4.2 \%) \end{aligned}$	$\begin{aligned} & 46,586 \\ & (-2.3 \%) \end{aligned}$	$\begin{aligned} & 45,121 \\ & (-5.4 \%) \end{aligned}$	$\begin{gathered} 897 \\ (1.9 \%) \end{gathered}$
Output $(\$)$	60,235	$\begin{aligned} & 57,976 \\ & (-3.8 \%) \end{aligned}$	$\begin{aligned} & 58,756 \\ & (-2.5 \%) \end{aligned}$	$\begin{aligned} & 56,862 \\ & (-5.6 \%) \end{aligned}$	$\begin{gathered} 780 \\ (1.3 \%) \end{gathered}$
Labor supply (hour)	1,737	$\begin{gathered} 1,724 \\ (-0.7 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1,711 \\ (-1.5 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1,695 \\ (-2.4 \%) \\ \hline \end{gathered}$	$\begin{array}{r} -13 \\ (-0.8 \%) \\ \hline \end{array}$

- About half of the debt burden is alleviated by IBR.

Average effects on young borrowers (ages 23-32)

- Focus on partial equilibrium
- No change in college entry and borrowing decisions.
- No change in firms job posting decisions

	Non-borrowers	Normalized borrowers			Difference
		FIX	IBR	$\operatorname{IBR}\left(w_{F I X}^{*}\right)$	IBR-FIX
Compensation (\$)	N/A	6,274	3,003	4,214	-3,271
Unemp. dur.	23.8	22.0	23.4	22.4	1.4
(week)		(-7.6\%)	(-1.7\%)	(-5.9\%)	(5.9%)
Match quality	0.836	$\begin{gathered} 0.812 \\ (-2.9 \%) \end{gathered}$	$\begin{gathered} 0.826 \\ (-1.2 \%) \end{gathered}$	$\begin{gathered} 0.813 \\ (-2.8 \%) \end{gathered}$	$\begin{gathered} 0.014 \\ (1.7 \%) \end{gathered}$
Wage income	47,697	45,689	46,586	45,121	897
(\$)		(-4.2%)	(-2.3\%)	(-5.4\%)	(1.9%)
Output (\$)	60,235	$\begin{aligned} & 57,976 \\ & (-3.8 \%) \end{aligned}$	$\begin{aligned} & 58,756 \\ & (-2.5 \%) \end{aligned}$	$\begin{aligned} & 56,862 \\ & (-5.6 \%) \end{aligned}$	$\begin{gathered} 780 \\ (1.3 \%) \end{gathered}$
Labor supply	1,737	1,724	1,711	1,695	-13
(hour)		(-0.7\%)	(-1.5\%)	(-2.4\%)	(-0.8\%

- About half of the debt burden is alleviated by IBR.
- Labor supply $\downarrow 0.8 \% \ll 15 \% \times 0.33=5 \%$.

Average effects on young borrowers (ages 23-32)

- Focus on partial equilibrium
- No change in college entry and borrowing decisions.
- No change in firms job posting decisions

	Non-borrowers	Normalized borrowers			Difference
		FIX	IBR	$\operatorname{IBR}\left(w_{F I X}^{*}\right)$	IBR-FIX
Compensation (\$)	N/A	6,274	3,003	4,214	-3,271
Unemp. dur. (week)	23.8	$\begin{gathered} 22.0 \\ (-7.6 \%) \end{gathered}$	$\begin{gathered} 23.4 \\ (-1.7 \%) \end{gathered}$	$\begin{gathered} 22.4 \\ (-5.9 \%) \end{gathered}$	$\begin{gathered} 1.4 \\ (5.9 \%) \end{gathered}$
Match quality	0.836	0.812 $(-2.9 \%$)	$\begin{gathered} 0.826 \\ (-1.2 \%) \end{gathered}$	$\begin{gathered} 0.813 \\ (-2.8 \%) \end{gathered}$	$\begin{gathered} 0.014 \\ (1.7 \% \end{gathered}$
Wage income (\$)	47,697	$\begin{aligned} & 45,689 \\ & (-4.2 \%) \end{aligned}$	$\begin{aligned} & 46,586 \\ & (-2.3 \%) \end{aligned}$	$\begin{aligned} & 45,121 \\ & (-5.4 \%) \end{aligned}$	$\begin{gathered} 897 \\ (1.9 \%) \end{gathered}$
Output	60,235	57,976	58,756	56,862	780
(\$)		(-3.8\%)	(-2.5\%)	(-5.6\%)	(1.3%)
Labor supply (hour)	1,737	$\begin{array}{r} 1,724 \\ (-0.7 \%) \\ \hline \end{array}$	$\begin{gathered} 1,711 \\ (-1.5 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1,695 \\ (-2.4 \%) \\ \hline \end{gathered}$	$\begin{gathered} -13 \\ (-0.8 \%) \\ \hline \end{gathered}$

- About half of the debt burden is alleviated by IBR.
- Labor supply $\downarrow 0.8 \% \ll 15 \% \times 0.33=5 \%$.

Average effects on young borrowers (ages 23-32)

- Focus on partial equilibrium
- No change in college entry and borrowing decisions.
- No change in firms job posting decisions

	Non -borrowers	Normalized borrowers			Difference
		FIX	IBR	$\operatorname{IBR}\left(w_{F I X}^{*}\right)$	IBR-FIX
Compensation (\$)	N/A	6,274	3,003	4,214	-3,271
Unemp. dur. (week)	23.8	$\begin{gathered} 22.0 \\ (-7.6 \%) \end{gathered}$	$\begin{gathered} 23.4 \\ (-1.7 \%) \end{gathered}$	$\begin{gathered} 22.4 \\ (-5.9 \%) \end{gathered}$	$\begin{gathered} 1.4 \\ (5.9 \%) \end{gathered}$
Match quality	0.836	$\begin{gathered} 0.812 \\ (-2.9 \%) \end{gathered}$	$\begin{gathered} 0.826 \\ (-1.2 \%) \end{gathered}$	$\begin{gathered} 0.813 \\ (-2.8 \%) \end{gathered}$	$\begin{gathered} 0.014 \\ (1.7 \%) \end{gathered}$
Wage income (\$)	47,697	$\begin{aligned} & 45,689 \\ & (-4.2 \%) \end{aligned}$	$\begin{aligned} & 46,586 \\ & (-2.3 \%) \end{aligned}$	$\begin{aligned} & 45,121 \\ & (-5.4 \%) \end{aligned}$	$\begin{gathered} 897 \\ (1.9 \%) \end{gathered}$
Output (\$)	60,235	$\begin{aligned} & 57,976 \\ & (-3.8 \%) \end{aligned}$	$\begin{aligned} & 58,756 \\ & (-2.5 \%) \end{aligned}$	$\begin{aligned} & 56,862 \\ & (-5.6 \%) \end{aligned}$	$\begin{gathered} 780 \\ (1.3 \%) \end{gathered}$
Labor supply (hour)	1,737	$\begin{gathered} 1,724 \\ (-0.7 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1,711 \\ (-1.5 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1,695 \\ (-2.4 \%) \\ \hline \end{gathered}$	$\begin{array}{r} -13 \\ (-0.8 \%) \\ \hline \end{array}$

- About half of the debt burden is alleviated by IBR.
- Labor supply $\downarrow 0.8 \% \ll 15 \% \times 0.33=5 \%$.
- $1 / 3$ of debt alleviation is attributed to better job matches.

General equilibrium implications of student debt

	FIX	IBR		
		(1)	(2)	(3)
Fraction of college graduates	41.4%	47.5%	47.7%	41.4%
Fraction of borrowers	62.2%	67.5%	67.6%	62.2%
Average debt among borrowers (\$)	10,370	16,960	17,013	10,370
Job contact rate	0.82	0.88	0.82	0.82
Wage income (\$)	37,212	38,452	38,018	37,445
		(3.3%)	(2.2%)	(0.6%)
Output (\$)	45,600	46,512	46,317	45,829
		(2.0%)	(1.6%)	(0.5%)
Welfare (\%)		2.4%	1.9%	0.8%

(1) - Full effect of IBR
(2) - Fix job contact rates are.
(3) - Fix college entry, borrowing, and job contact rates.

- Welfare decomposition: More college entry (1.1\%) + More job postings $(0.5 \%)+$ Better insurance in job search (0.8%).

Discussions on college premium and tuition subsidy

- College premium
- Non-borrower $=\$ 47,697-\$ 30,505=\$ 17,192$.
- Borrower under FIX $=\$ 47,697-\$ 30,505-\$ 2,008=\$ 15,184$
- Debt reduces college premium by 11%.
- Naive evaluation would overestimate the benefit of student debt.

Discussions on college premium and tuition subsidy

- College premium
- Non-borrower $=\$ 47,697-\$ 30,505=\$ 17,192$.
- Borrower under FIX $=\$ 47,697-\$ 30,505-\$ 2,008=\$ 15,184$
- Debt reduces college premium by 11%.
- Naive evaluation would overestimate the benefit of student debt.
- IBR essentially provides a tuition subsidy of $\$ 2,252$.
- This increases college enrollment by 6.1%.
- Implied college enrollment elasticity $=0.82$ (0.52-0.83, Kane, 2006).
- Much less costly due to few debt forgiveness!

Conclusion

- Develop and estimate a quantitative equilibrium model of college entry and job search.
- The model implies
- Borrowers are less picky and accept lower-paid jobs.
- IBR makes borrowers "pickier" and largely alleviates the debt burden.
- IBR may bring two general equilibrium effects that encourage college entry and job postings.

