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Abstract

We formulate a theory of corporate liquidity and risk management for a firm run
by a risk-averse entrepreneur, who cannot irrevocably commit her human capital. The
firm’s optimized balance sheet comprises on the asset side, illiquid capital, K, cash and
marketable securities, S, and on the liability side, equity and an endogenous line of
credit. The value-maximizing firm optimally smoothes compensation and manages its
idiosyncratic and systematic risk exposures so as to retain managerial talent and max-
imize its investment efficiency. As the liquidity-to-capital ratio s = S/K approaches
the endogenous credit limit s, the firm optimally responds by cutting investment and
compensation, selling insurance, and reducing both the idiosyncratic and systematic
volatilities of s. When the firm is less constrained, it invests more, increases compensa-
tion, engages more in financial hedging, and allocates liquid assets more in the market
portfolio.
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1 Introduction

The Modigliani and Miller (MM) irrelevance theorem implies that firms cannot create any

value through corporate liquidity and risk management. The basic logic is that any retained

earnings or corporate hedging positions can be undone or replicated by the firm’s investors,

so that there is no value added in the firm doing this for them. Accordingly, first-generation

theories of corporate liquidity and risk management have invoked financial market imperfec-

tions, such as tax distortions, or a wedge between internal and external funding costs, as a

basic rationale for corporate risk management.1

In this paper we develop a theory of liquidity and risk management that emphasizes ben-

efits over and above those that spring from tax or asymmetric information distortions. These

benefits have to do with the firm’s enhanced ability through risk and liquidity management

to retain talent and valuable human capital. Our theory considers the problem faced by a

risk-averse entrepreneur, who cannot irrevocably commit her human capital to the firm. The

entrepreneur has constant relative risk-averse preference and seeks to smooth consumption.

To best retain the entrepreneur, the firm optimally compensates her with current and future

promised consumption. But to back up these promises the firm must engage in liquidity and

risk management.

The main point of departure of our analysis is that corporate risk management is not

so much about achieving an optimal risk-return profile for investors, they can do that on

their own, than to achieve optimal risk-return profiles for risk-averse, under-diversified, key

employees (or the entrepreneur in our setting) under limited commitment. In effect, the

firm is both the employer and the asset manager of its key employees. This perspective

on corporate risk management is consistent with Duchin et al. (2016), who find that non-

financial firms invest 40% of their liquid savings in risky financial assets. More strikingly, they

find that the less constrained firms invest more in the market portfolio, which is consistent

with our model’s prediction that firms, if unconstrained, seek to attain the mean-variance

frontier for their key employees. In contrast, we show that when severely constrained, firms

cut compensation, reduce corporate investment, engage in asset sales, minimize exposures to

the market and idiosyncratic risks, with the primary objective of surviving and retaining key

employees. These results are also in line with the findings of Rampini, Sufi, and Viswanathan

1See Stulz (1984), Smith and Stulz (1985), and Froot, Scharfstein, and Stein (1993).

1



(2014), Brown and Matsa (2016), and Donangelo (2016).

The firm’s optimized balance sheet in our model is composed of illiquid capital, K, and

cash and marketable securities, S, on the asset side. On the liability side, the firm has equity

and a line of credit, with a limit that is endogenously determined. Illiquid capital can be

accumulated subject to adjustment costs and is exposed to stochastic depreciation. The

firm’s operations are exposed to both idiosyncratic and aggregate risk. It manages its risk

by choosing the optimal loadings on the idiosyncratic and market risk factors. The firm’s

liquidity is augmented via retained earnings from operations, profits and losses from its

portfolio of marketable securities including its hedging and insurance positions. The unique

state variable in our dynamic optimization problem is the firm’s liquidity-to-capital ratio

s = S/K. When liquidity s approaches an endogenously determined lower bound, where the

firm’s credit limit is exhausted, the entrepreneur optimally responds by cutting investment,

consumption, and turning off all risk exposures of its liquidity s.

The model we develop generalizes the limited commitment framework of Hart and Moore

(1994, 1998). They formulate a theory of debt and endogenous debt capacity arising from

the inalienability of a risk-neutral entrepreneur’s human capital. In a finite-horizon model

with a single fixed project, deterministic cash flows, and fixed human capital, they show

that there is a finite debt capacity for the firm, which is given by the maximum repayment

that the entrepreneur can credibly promise: any higher repayment and the entrepreneur

would abandon the firm. We generalize their model along the following dimensions: first, we

introduce risky human capital and cash flows; second, we assume that the entrepreneur is

risk averse; third, we consider an infinitely-lived firm with ongoing investment; and, fourth

we also add a limited liability or commitment constraint for investors. In this more realistic

model we are nevertheless able to derive the optimal investment, consumption, liquidity and

risk management policy of the firm.

Rampini and Viswanathan (2010, 2013) also develop a limited-commitment-based theory

of risk management, which focuses on the tradeoff between exploiting current versus future

investment opportunities. If the firm invests today it may exhaust its debt capacity and

thereby forego future investment opportunities. If instead the firm foregoes investment and

hoards its cash it is in a position to be able to exploit potentially more profitable investment

opportunities in the future. The main differences between our model and theirs are the

risk aversion of the entrepreneur, the modeling of limited commitment in the form of risky
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inalienable human capital, and the illiquidity of physical capital.

Moreover, we focus on a different aspect of corporate liquidity and risk management,

namely the management of risky human capital. In particular, we emphasize the benefits

of risk management to help smooth consumption of the firm’s stakeholders (entrepreneur,

managers, key employees). This consumption smoothing motive, which requires building

liquidity buffers in low productivity states, is so strong that it generally outweighs the coun-

tervailing investment financing motive of Froot, Scharfstein, and Stein (1993) and Rampini

and Viswanathan (2010, 2013), which requires building liquidity buffers in high productivity

states, where investment opportunities are greatest. If the firm has been unable to build a

sufficient liquidity buffer in the low productivity state, we show that it is optimal for the

entrepreneur to take a pay cut, consistent with the evidence on executive compensation and

corporate cash holdings (e.g. Ganor, 2013). It is also optimal to sell insurance on persistent

productivity shocks to generate valuable liquidity. While asset sales in response to a nega-

tive productivity shock (also optimal in our setting) are commonly emphasized (Campello,

Giambona, Graham and Harvey, 2011), our analysis further reveals the dynamic optimality

of other observed corporate policies, such as selling insurance and moderating pay.

Our theory can in particular explain the observed corporate policies of human capital

intensive, high-tech, firms. These firms often hold substantial cash pools, which may be

necessary to make credible future compensation promises and thereby retain highly valued

employees, who naturally have attractive alternative job opportunities. Indeed, employees

in these firms are largely paid in the form of deferred stock compensation. When their stock

options vest and are exercised, the companies often engage in stock repurchases so as to

avoid excessive stock dilution. But such repurchase programs require funding, which could

be part of the explanation for why these companies hold such large liquidity buffers.

The firm’s optimal investment and consumption policies can be characterized as gener-

alizations, that take account of the marginal corporate value of liquidity, of respectively, the

classical q-theory of investment and the permanent-income theory of consumption.2 Simi-

larly, the firm’s optimal liquidity and risk management policies can be characterized as a

generalization of Merton’s classical intertemporal portfolio-choice rules that again take into

account the marginal value of liquidity.

2Faulkender and Wang (2006), Pinkowitz, Stulz, and Williamson (2006), Dittmar and Mahrt-Smith
(2007), and Bolton, Schaller, and Wang (2014) find that the marginal value of cash is typically greater
than one.
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In sum, our model integrates the following four highly interdependent corporate policies:

1) liquidity management (cash and lines of credit); 2) systematic and idiosyncratic risk

management; 3) executive compensation or consumption; 4) corporate investment and asset

sales, which all must take account of the firm’s endogenous credit limit s, determined by the

inalienability-of-human-capital constraints.

When the firm is flush with liquidity, it is effectively financially unconstrained, so that

its investment approaches the Hayashi (1982) risk-adjusted first-best benchmark, and its

consumption and asset allocations approach the (generalized) Merton (1971) consumption

and mean-variance portfolio. In contrast, when the firm’s liquidity is low, its primary concern

is survival, which requires shutting down the volatility of the firm’s liquidity s. Moreover,

the firm substantially cuts back on all its expenditures and engages in asset and insurance

sales to generate income.

We also show that the firm’s optimal liquidity and risk management problem can be re-

formulated as a dual optimal contracting problem over consumption and investment between

fully diversified investors and a risk-averse entrepreneur subject to inalienability-of-human-

capital constraints. More concretely, in the dual optimal contracting problem the state

variable is the certainty-equivalent wealth that investors promise to the entrepreneur, w,

and the value of the firm to investors is p(w). Moreover, under this optimal contract the

firm’s investment and financing policies and the entrepreneur’s consumption are all expressed

as functions of w. As Table 1 below summarizes, we show that this dual contracting problem

is equivalent to the entrepreneur’s liquidity and risk management problem with s = −p(w)

and the entrepreneur’s certainty-equivalent value is m(s) = w. The key observation here is

that the firm’s endogenously determined credit limit is the outcome of an optimal financial

contracting problem. In other words, the firm’s financial constraint is an optimal credit

limit that reflects the entrepreneur’s inability to irrevocably commit her human capital to

the firm.

We extend the simplest formulation of our model in two directions. First, we also intro-

duce a limited commitment (or limited liability) constraint for investors. In the two-sided

commitment problem, where a limited liability constraint for investors must also hold, we

obtain further striking results. The firm may now over-invest and the entrepreneur may

over-consume (compared to the first-best benchmark). The intuition is as follows. To make

sure that investors do not default on their promises to the entrepreneur, w cannot exceed
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Table 1: Equivalence: Primal optimization and dual contracting problems

Primal Dual

Optimization Contracting

State Variable s w

Value Function m(s) p(w)

an upper bound w given by p(w) = 0. In other words, the firm’s liquidity, s, cannot ex-

ceed s = 0, otherwise, investors would simply syphon off the excess liquidity. As a result,

the entrepreneur responds by increasing investment and consumption in order to satisfy the

investors’ limited-commitment constraint.

Second, we introduce persistent productivity shocks in the form of a two-state Markov

transition process between high and low productivity states. We show that the benefits of

risk management to smooth consumption generally outweigh the countervailing investment

financing benefits of allocating liquidity to high productivity states. In particular, it can be

optimal for a highly financially constrained firm in the low productivity state to bet against

the realization of a high productivity shock (in other words, to sell insurance) in order to

generate liquidity.

Related literature. Our paper is related to the microeconomics literature on contracting

under limited commitment following Harris and Holmstrom (1982). They analyze a model of

optimal insurance for a risk-averse worker, who is unable to commit to a long-term contract.

Berk, Stanton, and Zechner (2010) generalize Harris and Holmstrom (1982) by incorporating

capital structure and human capital bankruptcy costs into their setting. In terms of method-

ology, our paper builds on the dynamic contracting in continuous time work of Holmstrom

and Milgrom (1987), Schaettler and Sung (1993), and Sannikov (2008), among others.

Directly related to our theory is the contracting problem considered by Ai and Li (2015).

They analyze a dynamic contracting problem between a risk-neutral shareholder and a risk-

averse CEO that is similar to our dual contracting problem. They study the dynamics

of optimal CEO compensation and investment under limited commitment and show that

compensation increases as the firm becomes more profitable when the CEO’s participation

constraint binds. They further show that the firm may over-invest when the limited com-
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mitment constraint of the shareholder binds. Also closely related is Lambrecht and Myers

(2012) who consider an intertemporal model of a firm run by a risk-averse entrepreneur with

habit formation and derive the firm’s optimal dynamic corporate policies. They show that

the firm’s optimal payout policy resembles the famous Lintner (1956) payout rule of thumb.

Building on Merton’s intertemporal portfolio choice framework, Wang, Wang, and Yang

(2012) study a risk-averse entrepreneur’s optimal consumption-savings, portfolio choice, and

capital accumulation decisions when facing uninsurable capital and productivity risks. Unlike

Wang, Wang, and Yang (2012), our model features optimal liquidity and risk management

policies that arise endogenously from an underlying financial contracting problem.

Our paper is evidently related to the dynamic corporate security design literature in

the vein of DeMarzo and Sannikov (2006), Biais, Mariotti, Plantin, and Rochet (2007),

and DeMarzo and Fishman (2007b).3 These papers also focus on the implementation of

the optimal contracting solution via corporate liquidity (cash and credit line.) Two key

differences between our model and these papers are (1) risk aversion and (2) systematic and

idiosyncratic risk, which together lead to a theory of corporate portfolio management, thus

explaining the “marketable securities” entry on corporate balance sheets plus the zero-NPV,

off-balance-sheet hedging instruments (e.g. futures and insurance.) A third key difference

is that these papers focus on moral hazard while we focus on the inalienability of risky

human capital. A fourth difference is that we model corporate investment and generalize

the q-theory of investment to settings with limited commitment.4

Our paper also relates to the macroeconomics literature that studies the implications

of dynamic agency problems for firms’ investment and financing decisions. Green (1987),

Thomas and Worrall (1990), Marcet and Marimon (1992), Kehoe and Levine (1993) and

Kocherlakota (1996) are important early contributions on optimal contracting.

Building on these early contributions, Alvarez and Jermann (2000) extend the first and

second welfare theorems to economies with limited commitment. Our entrepreneur’s opti-

mization problem is closely related to the agent’s dynamic optimization problem in Alvarez

and Jermann (2000). While their focus is on optimal consumption allocation, we focus

3See also Biais, Mariotti, Rochet, and Villeneuve (2010), and Piskorski and Tchistyi (2010), among others.
Biais, Mariotti, and Rochet (2013) and Sannikov (2013) provide recent surveys on this subject. For static
security design models, see Townsend (1979) and Gale and Hellwig (1985), Innes (1990), and Holmstrom
and Tirole (1997).

4DeMarzo and Fishman (2007a) and DeMarzo, Fishman, He and Wang (2012) generalize the moral hazard
model of DeMarzo and Sannikov (2006) and DeMarzo and Fishman (2007b) to allow for investment.
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on both consumption and corporate investment. As in DeMarzo and Sannikov (2006), the

continuous-time formulation allows us to provide sharper, closed-form solutions for con-

sumption, investment, liquidity and risk management policies up to an ordinary differential

equation (ODE) for the entrepreneur’s certainty equivalent wealth m(s).

Albuquerque and Hopenhayn (2004), Quadrini (2004), and Clementi and Hopenhayn

(2006) characterize firms’ financing and investment decisions under limited commitment

and/or asymmetric information.5 Kehoe and Perri (2002) and Albuquerque (2003) analyze

the implications of limited commitment in international business cycles and foreign direct

investments. Lorenzoni and Walentin (2007) study q theory of investment under limited

commitment. Miao and Zhang (2015) develop a duality-based solution method for limited

commitment problems. Finally, our paper is clearly related to the voluminous economics

literature on human capital that builds on Ben-Porath (1967) and Becker (1975).

2 Model

We consider an intertemporal optimization problem faced by a risk-averse entrepreneur, who

optimally chooses her consumption, savings, capital investment, and exposures to both sys-

tematic and idiosyncratic risks, subject to the limited commitment constraint that she cannot

promise to operate the firm indefinitely under any circumstances. This limited-commitment

problem for the entrepreneur results in an endogenous financial constraint for the firm. To

best highlight the central economic mechanism arising from this limited-commitment con-

straint, we remove all other financial frictions from the model and assume that financial

markets are otherwise fully competitive and dynamically complete (we show how dynamic

completeness is constructed through spanning in Section 2.2). The detailed model descrip-

tion begins below with the entrepreneur’s production technology and preferences.

2.1 Production Technology and Preferences

Production and Capital Accumulation. We adopt the capital accumulation specifica-

tion of Cox, Ingersoll, and Ross (1985) and Jones and Manuelli (2005). The firm’s capital

5See Ljungqvist and Sargent (2004) Part V for a textbook treatment on the limited-commitment-based
macro models.
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stock K evolves according to a controlled Geometric Brownian Motion (GBM) process:

dKt = (It − δKKt)dt+ σKKt

(√
1− ρ2dZ1,t + ρdZ2,t

)
, (1)

where I is the firm’s rate of gross investment, δK ≥ 0 is the expected rate of depreciation,

and σK is the volatility of the capital depreciation shock. Without loss of generality, we

decompose risk into two orthogonal components: an idiosyncratic shock represented by the

standard Brownian motion Z1 and a systematic shock represented by the standard Brownian

motion Z2. The parameter ρ measures the correlation between the firm’s capital risk and

systematic risk, so that the firm’s systematic volatility is equal to ρσK and its idiosyncratic

volatility is given by

εK = σK
√

1− ρ2 . (2)

Production requires combining the entrepreneur’s inalienable human capital with the

firm’s capital stock Kt, which together yield revenue AKt. Without the entrepreneur’s

human capital the capital stock Kt does not generate any cash flows.6 Investment involves

both a direct purchase and an adjustment cost, so that the firm’s free cash flow (after capital

expenditures) is given by:

Yt = AKt − It −G(It, Kt), (3)

where the price of the investment good is normalized to one and G(I,K) is the standard

adjustment cost function in the q-theory of investment. Note that Yt can take negative

values, which simply means that investors provide additional financing to close the gap

between contemporaneous revenue, AKt, and investment and compensation outlays. We

simplify the model by assuming that the firm’s adjustment cost G(I,K) is homogeneous

of degree one in I and K (a common assumption in the q-theory of investment), so that

G(I,K) takes the following separable form:

G (I,K) = g(i)K, (4)

where i = I/K denotes the firm’s investment-capital ratio and g(i) is increasing and convex

in i. As Hayashi (1982) has shown, given this homogeneity property Tobin’s average and

6An implication of our assumptions is that managerial retention is always optimal as we show in our
optimal contracting formulation.
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marginal q are equal in the First-best benchmark.7 However, under limited commitment an

endogenous wedge between Tobin’s average and marginal q will emerge in our model.8

Preferences. The infinitely-lived entrepreneur has a standard concave utility function over

positive consumption flows {Ct; t ≥ 0} given by:

Jt = Et
[∫ ∞

t

ζe−ζ(v−t)U(Cv)dv

]
, (5)

where ζ > 0 is the entrepreneur’s subjective discount rate, Et [ · ] is the time-t conditional

expectation, and U(C) takes the standard constant-relative-risk-averse utility (CRRA) form:

U(C) =
C1−γ

1− γ
, (6)

with γ > 0 denoting the coefficient of relative risk aversion. We normalize the flow payoff

with ζ in (5), so that the utility flow is given by ζU(C).9

2.2 Complete Financial Markets

We assume that financial markets are perfectly competitive and complete. Market com-

pleteness is obtained through dynamic spanning with three long-lived assets as in the Black-

Merton-Scholes framework (Duffie and Huang, 1985): Given that the firm’s production is

subject to two shocks, Z1 and Z2, financial markets are dynamically complete if the following

three non-redundant financial assets can be dynamically and frictionlessly traded:

a. A risk-free asset that pays interest at a constant risk-free rate r;

7Lucas and Prescott (1971) analyze dynamic investment decisions with convex adjustment costs, though
they do not explicitly link their results to marginal or average q. Abel and Eberly (1994) extend Hayashi
(1982) to a stochastic environment and a more general specification of adjustment costs.

8An endogenous wedge between Tobin’s average and marginal q also arises in cash-based optimal financing
and investment models such as Bolton, Chen, and Wang (2011) and optimal contracting models such as
DeMarzo, Fishman, He, and Wang (2012).

9This normalization is convenient in contracting models (see Sannikov (2008)). We can generalize these
preferences to allow for a coefficient of relative risk aversion that is different from the inverse of the elasticity
of intertemporal substitution, à la Epstein and Zin (1989). Indeed, as Epstein-Zin preferences are homothetic,
allowing for such preferences in our model will not increase the dimensionality of the optimization problem.
Details are available upon request.
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b. A risky asset that is perfectly correlated with the idiosyncratic shock Z1. The incre-

mental return dR1,t on this risky asset over the time interval dt is

dR1,t = rdt+ εKdZ1,t . (7)

Note that the expected return on this risky asset equals the risk-free rate r. As it is

only subject to idiosyncratic shocks it earns no risk premium. We let the volatility of

this risky asset be εK without loss of generality;

c. A risky asset that is perfectly correlated with the systematic shock Z2. The incremental

return dR2,t of this asset over the time interval dt is

dR2,t = µ2dt+ σ2dZ2,t , (8)

where µ2 and σ2 are constant mean and volatility parameters. As this risky asset is

only subject to the systematic shock we refer to it as the market portfolio.

Dynamic and frictionless trading with these three securities implies that the following

unique stochastic discount factor (SDF) exists:

dMt

Mt

= −rdt− ηdZ2,t , (9)

where M0 = 1 and η is the Sharpe ratio of the market portfolio given by:

η =
µ2 − r
σ2

.

Note that the SDF M follows a geometric Brownian motion with the drift equal to the

negative risk-free rate, as required under no-arbitrage. By definition the SDF is only exposed

to the systematic shock Z2. Fully diversified investors will only demand a risk premium for

their exposures to systematic shocks. The entrepreneur, however, is not fully diversified

given her exposure to the risky venture.
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2.3 Limited Commitment and Endogenous Borrowing Capacity

The entrepreneur has an option to walk away at any time from her current firm of size Kt,

thereby leaving behind all her liabilities. What deters the entrepreneur from doing so is the

fact that she is more efficient at her current firm than at her next-best alternative, a firm of

size αKt, where α ∈ (0, 1) is a given constant. Thus, as long as the current firm’s liabilities

are not too large the entrepreneur prefers to stay with the firm. Note that we are expressing

the limited commitment constraint in the form of an alternative firm where the entrepreneur’s

human capital can be deployed. Under this formulation of the entrepreneur’s outside option

there is no need for misappropriation of the firm’s capital stock by the entrepreneur. An

alternative interpretation of the entrepreneur’s outside option is, of course, that she can at

any time t abscond with a fraction α of the firm’s capital stock Kt and start afresh with zero

liabilities.10

The limited-commitment constraints naturally map into an endogenous debt capacity for

the firm as in Hart and Moore (1994, 1998), Kiyotaki and Moore (1997), and Albuquerque

and Hopenhayn (2004). However, unlike these models our framework incorporates both

idiosyncratic and aggregate shocks. Additionally, we link the determinants of the firm’s

endogenous debt capacity to not only corporate investment and asset sales, but also corporate

liquidity, risk management with respect to idiosyncratic and aggregate shocks, and optimal

compensation. Before characterizing the solution under limited commitment, we derive the

first-best optimum under full commitment.

3 First Best

Under dynamically complete markets the entrepreneur’s savings, portfolio allocation, and

consumption problem, to maximize her utility, can be separated from the corporate invest-

ment problem, to maximize firm value (see Duffie, 2001). There are two ways of formulating

the first-best optimization model: either as a static maximization problem with a single

intertemporal budget constraint, or as a dynamic programming problem with continuous,

dynamic, portfolio rebalancing. The latter construction provides a more direct link to the

10In practice entrepreneurs can sometimes partially commit themselves and lower their outside options by
signing non-compete clauses. This possibility can be captured in our model by lowering the parameter α,
which relaxes the entrepreneur’s inalienability-of-human-capital constraints.
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problem under limited commitment, since it is the limit formulation when the entrepreneur’s

commitment constraint vanishes. Accordingly, we shall rely on the dynamic programming

method to characterize the first-best solution, which can be framed without loss of generality

as a dynamic liquidity and risk management problem.

3.1 First-Best Liquidity and Risk Management Problem

The entrepreneur’s total wealth includes both her liquid financial holdings and her ownership

of the illiquid productive capital K. Let {St : t ≥ 0} denote the entrepreneur’s liquid wealth

process. The entrepreneur continuously allocates {St : t ≥ 0} to any admissible positions

{Φ1,t,Φ2,t : t ≥ 0} in the two risky financial assets, whose returns are given by (7) and

(8) respectively, and the residual amount (St − Φ1,t − Φ2,t) to the risk-free asset. Her liquid

wealth then stochastically evolves as follows:

dSt = (rSt + Yt − Ct)dt+ Φ1,tεKdZ1,t + Φ2,t[(µ2 − r)dt+ σ2dZ2,t] . (10)

The first term in (10), rSt+Yt−Ct, is simply the sum of the firm’s interest income rSt and net

operating cash flows, Yt−Ct, the second term, Φ1,tεKdZ1,t, is the exposure to the idiosyncratic

shock Z1, which earns no risk premium, and the third term, Φ2,t[(µ2− r)dt+ σ2dZ2,t], is the

excess return from the investment in the market portfolio.

In the absence of any risk exposure rSt + Yt − Ct is simply the rate at which the en-

trepreneur saves when St ≥ 0 or dissaves (by drawing on a line of credit (LOC) at the

risk-free rate r, when St < 0). In general, saving all liquid wealth S at the risk-free rate is

sub-optimal. By dynamically engaging in risk taking and risk management, through the risk

exposures Φ1 and Φ2, the entrepreneur will do better, as we show next.

The Entrepreneur’s Optimization Problem. The entrepreneur dynamically chooses

consumption C, corporate investment I, idiosyncratic risk hedging demand Φ1, and the

market portfolio exposure Φ2, to maximize her utility given in (5)-(6), subject to the liquidity

accumulation dynamics (10) and the transversality condition limv→∞ Et
[
e−ζ(v−t)|Jv|

]
= 0,

where Jv is the entrepreneur’s time-v value function.

Let J(Kt, St) denote the entrepreneur’s time-t value function Jt which depends on the

firm’s capital stock Kt and liquid savings St. By the standard dynamic programming argu-
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ment, J(K,S) satisfies the following Hamilton-Jacobi-Bellman (HJB) equation:

ζJ(K,S) = max
C,I,Φ1,Φ2

ζU(C) + (rS + Φ2(µ2 − r) + AK − I −G(I,K)− C)JS(K,S)

+ (I − δKK)JK +
σ2
KK

2

2
JKK(K,S) +

(
ε2KΦ1 + ρσKσ2Φ2

)
KJKS(K,S)

+
(εKΦ1)2 + (σ2Φ2)2

2
JSS(K,S) . (11)

The first term on the right side of (11) represents the entrepreneur’s normalized flow utility

of consumption; the second term (involving JS) represents the marginal value of incremental

liquid savings S; the third term (involving JK) represents the marginal value of net invest-

ment (I− δKK); and the last three terms (involving JKK , JKS, and JSS) capture the impact

of idiosyncratic and systematic shocks.

Given the concavity of the utility function U(C) and the convexity of the capital ad-

justment cost function, the optimal consumption C(K,S) and investment I(K,S) rules are

characterized by the following first-order conditions (FOCs):

ζU ′(C) = JS(K,S), (12)

and

1 +GI(I,K) =
JK(K,S)

JS(K,S)
. (13)

Equation (12) is the standard FOC for consumption, equating the marginal utility of con-

sumption with the marginal value of savings JS, and equation (13) states that the marginal

cost of investing (1 +GI) is equal to the entrepreneur’s marginal value of investing, which

is given by the ratio JK/JS of the entrepreneur’s marginal value of illiquid capital JK to the

marginal value of liquid savings JS.

Similarly, we obtain the following FOCs for the firm’s optimal risk exposure policies:

Φ1 = −KJKS
JSS

, (14)

and

Φ2 = − η

σ2

JS
JSS
− ρσK

σ2

KJKS
JSS

. (15)
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We refer to Φ1 as the idiosyncratic-risk hedging demand : the only reason for holding this

risky asset is for hedging purposes against the firm’s idiosyncratic risks. The entrepreneur’s

market portfolio holding Φ2 is given by the classical exposure to the market excess return (the

first term) and a hedge against the firm’s systematic-risk exposure (the second term). Equa-

tions (11), (12), (13), (14) and (15) jointly characterize the solution to the entrepreneur’s

optimization problem.

Guided by the observation that the value function for the standard Merton portfolio-

choice problem (without illiquid assets) inherits the CRRA form of the agent’s utility func-

tion U( · ), we conjecture and verify that the entrepreneur’s value function in the first-best

problem, denoted by JFB(K,S), takes the same form as in Merton’s problem:

JFB(K,S) =
(bMFB(K,S))1−γ

1− γ
, (16)

where MFB(K,S) is the market value of the entrepreneur’s wealth (to be derived) and b is

the following constant:11

b = ζ

[
1

γ
− 1

ζ

(
1− γ
γ

)(
r +

η2

2γ

)] γ
γ−1

. (17)

To ensure that the problem is well posed under first best, we require the following pa-

rameter constraint:

Condition 1 :
1

γ
− 1

ζ

(
1− γ
γ

)(
r +

η2

2γ

)
> 0 . (18)

3.2 Solution

Given that markets are complete, the firm’s investment decisions are chosen to maximize the

market value of its capital stock. Since our model is homogeneous in K, we can characterize

the solution per unit of capital. As is standard, we therefore describe the solution in terms

of lower-case variables: consumption ct = Ct/Kt, it = It/Kt, liquidity, st = St/Kt, capital

adjustment cost gt = Gt/Kt, idiosyncratic risk hedging demand φ1 = Φ1/K, and market

portfolio demand φ2 = Φ2/K.

11In the special case when γ = 1 we have b = ζ exp
[
1
ζ

(
r + η2

2 − ζ
)]

.
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First, we show that the value of capital QFB
t follows a GBM process given by:

dQFB
t = QFB

t

[(
iFB − δK

)
dt+ (εKdZ1,t + ρσKdZ2,t)

]
,

with the drift
(
iFB − δK

)
, idiosyncratic volatility εK , and systematic volatility ρσK , identical

to those for the dynamics for {Kt : t ≥ 0}.

Corporate Investment, the Value of Capital QFB, and Asset Pricing. The follow-

ing proposition characterizes the first-best implications for corporate investment, the value

of capital, and asset pricing.

Proposition 1 The value of capital, QFB(K), is proportional to K, QFB(K) = qFBK,

where qFB is Tobin’s q solving:

qFB = max
i

A− i− g(i)

r + δ − i
, (19)

and the maximand for (19), denoted by iFB, is the first-best investment-capital ratio. The

risk-adjusted capital depreciation rate, δ equals the expected depreciation rate δK augmented

by the risk premium ρησK:

δ = δK + ρησK . (20)

The derivations for this and all other propositions in the remainder of the paper are

provided in the Appendix.

This proposition generalizes the well known Hayashi conditions linking investment to

Tobin’s average (and marginal) q, by extending his framework to situations where the firm’s

operations are subject to both idiosyncratic and systematic risk, and where systematic risk

commands a risk premium. As in the q-theory of investment, capital adjustment costs create

a wedge between the value of installed capital and newly purchased capital, so that qFB 6= 1

in general. Optimal investment i is given by the solution to the FOC for investment:

qFB = 1 + g′(iFB), (21)

which equates marginal q to the marginal cost of investing 1 + g′(i), at the optimum invest-

ment level iFB. Jointly solving (19) and (21) yields the values for qFB and iFB. To ensure
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that the value of capital QFB
t is finite, which is necessary for convergence under first best,

we assume that the following condition is satisfied:

Condition 2 : iFB < r + δ . (22)

where iFB is the unique maximand for (19). Let µFB denote the expected market return

for the value of capital, QFB
t . Using Ito’s formula, we may then express the expected return

µFB as:

µFB =
A− iFB − g(iFB)

qFB
+
(
iFB − δK

)
= r+δ−iFB+

(
iFB − δK

)
= r+βFB (µ2 − r) , (23)

where the first equality gives the sum of the dividend yield and expected capital gains, the

second equality uses (19), and where

βFB =
ρσK
σ2

. (24)

That is, the CAPM holds for the value of capital QFB
t , where βFB is given by (24).

Optimal Consumption cFB(s) and Asset Allocation
(
φFB1 (s), φFB2 (s)

)
. The next

proposition characterizes optimal consumption and asset allocation rules.

Proposition 2 Under Condition 1 and Condition 2 given by (18) and (22), the entrepreneur’s

optimal consumption policy is given by

cFB(s) = χ
(
s+ qFB

)
, (25)

where χ is the marginal propensity to consume (MPC) given by

χ = r +
η2

2γ
+ γ−1

(
ζ − r − η2

2γ

)
. (26)

The first-best idiosyncratic risk hedge φFB1 and the market portfolio allocation φFB2 are re-
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spectively given by:

φFB1 (s) = −qFB , (27)

φFB2 (s) = −βFBqFB +
η

γσ2

(
s+ qFB

)
. (28)

Under the first best, the entrepreneur’s total net worth, denoted by MFB
t , is given by

the sum of her liquid wealth St and the market value of capital QFB(Kt):

MFB
t = QFB(Kt) + St = qFBKt + St . (29)

Again using Ito’s formula, we can express the dynamics of {MFB
t : t ≥ 0} as:

dMFB
t = MFB

t

[(
r − χ+

η2

γ

)
dt+

η

γ
dZ2,t

]
. (30)

That is, total net worth M is a GBM process with drift (r−χ) + η2/γ and volatility η/γ for

the systematic shock Z2.

Two important observations follow from this characterization: First, we note that total

net worth MFB has zero net exposure to the idiosyncratic risk Z1. This is simply due to

the fact that the entrepreneur is averse to any net exposure to risk that does not generate

any risk premium. How does the entrepreneur achieve this? One way is for her to take an

offsetting short idiosyncratic risk exposure in the financial markets by setting φFB1 = −qFB,

so that her exposure to the idiosyncratic risk Z1 through her long position in the business

venture is exactly offset by an equivalent short position in the financial asset that is exposed

to the idiosyncratic risk Z1.

Second, under perfect and complete financial markets, the entrepreneur capitalizes the

entire present value of her capital stock K at a unit price of qFB. She then constructs a

Merton-type consumption and portfolio allocation that results in net worth MFB. That is

why the marginal propensity to consume (MPC) and the dynamics for the net worth MFB

are the same as those in Merton (1971).

In summary, our first-best benchmark has the following important characteristics: 1) An

optimal consumption rule that is linear in total net worth MFB; 2) An optimal liquidity

and risk management policy such that the entrepreneur’s net exposure to idiosyncratic risk
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is entirely eliminated as seen from (30), and net exposure to systematic risk of η/γ, as in

Merton (1971); 3) A constant investment-capital ratio and a constant Tobin’s q as in Hayashi

(1982); 4) An endogenous value for the capital process QFB that follows a GBM process as

in the Black-Scholes economy.

4 Solution under Limited Commitment

Next, we characterize the entrepreneur’s optimization problem as a liquidity and risk man-

agement problem under limited commitment. The entrepreneur’s inability to fully commit

will constrain her ability to dynamically manage liquidity and risk over time and across

states of nature, in particular by limiting her credit capacity. The entrepreneur responds to

the constraints on her ability to obtain an optimal risk exposure through financial markets,

by engaging in self-insurance through liquidity management.

Limited Commitment and Endogenous Credit Capacity. The entrepreneur can at

any moment walk away from her firm of size Kt, leaving behind all her liabilities. What deters

her from doing so is that she is more efficient and better off with her current firm than her

next-best alternative, a firm with size αKt (where α ∈ (0, 1) is a given constant), provided

that the firm’s current liabilities are not too high. More formally, the firm’s endogenous debt

capacity, denoted by St, satisfies the following equation:

J(Kt, St) = J(αKt, 0), (31)

which equates the value for the entrepreneur J(K,S) of remaining with the firm and her

outside option J(αK, 0). Given that it is never efficient for the entrepreneur to quit on the

equilibrium path, J(K,S) must satisfy the following condition:

J(Kt, St) ≥ J(Kt, St) . (32)

Using arguments similar to Alvarez and Jermann (2000) and Ai and Li (2015), we can show

that the entrepreneur’s optimization problem is increasing and concave.12 Therefore, we can

12Due to space constraints, we omit the proofs. They are available upon request from the authors.
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write (31) and (32) as:

St ≥ St = S(Kt) , (33)

where S(Kt) defines the firm’s endogenous credit capacity for any given capital stock Kt.

When St < 0, the entrepreneur is in debt and draws down a LOC. The entrepreneur can

borrow on this LOC at the risk-free rate r up to S(Kt) because (33) ensures that the

entrepreneur does not walk away from the firm in an attempt to evade her debt obligations.

Finally, we may write the endogenous debt capacity constraint (33) as follows by appealing

to our model’s homogeneity property in K:

st ≥ s , (34)

where |s| is the endogenous credit capacity per unit of capital.

The Entrepreneur’s Optimization Problem and Certainty-Equivalent Wealth.

Other than facing the additional endogenous credit constraint discussed above, the en-

trepreneur faces essentially the same tradeoffs in the interior region as in the first-best

problem of Section 3.1. In particular, the FOCs for C, I, Φ1, and Φ2 in the limited commit-

ment problem are given by (12), (13), (14), and (15), respectively.

Again guided by the observation that the entrepreneur’s value function inherits the CRRA

form of her utility function U( · ) in the first-best problem, we conjecture and verify that the

entrepreneur’s value function under limited commitment J(K,S) also takes the form:

J(K,S) =
(bM(K,S))1−γ

1− γ
, (35)

where now M(K,S) is the certainty-equivalent wealth of the entrepreneur in the limited

commitment problem. Note that b in (35) is the same as in (17), the value of b in the first-

best problem. Because our model is homogeneous in K and S, we can express the certainty

equivalent wealth function per unit of capital:

M(K,S) = m(s) ·K. (36)
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Optimal Consumption c(s), Investment i(s), and Asset Allocation φ1(s) and φ2(s).

The next proposition characterizes the optimal consumption, investment, and asset allocation

rules under limited commitment in the interior region where s > s.

Proposition 3 Given m(s), the optimal consumption policy is

c(s) = χm′(s)−γm(s) , (37)

where χ is the MPC under first best given by (26). Corporate investment satisfies:

1 + g′(i) =
m(s)

m′(s)
− s . (38)

The idiosyncratic risk hedge φ1(s) and the market portfolio allocation φ2(s) are given by:

φ1(s) = −JKS
JSS

=
sm′′(s)m(s) + γm′(s)(m(s)− sm′(s))

m(s)m′′(s)− γm′(s)2
, (39)

φ2(s) = − η

σ2

JS
KJSS

− βFB JKS
JSS

,

= βFB
sm′′(s)m(s) + γm′(s)(m(s)− sm′(s))

m(s)m′′(s)− γm′(s)2
− η

σ2

m′(s)m(s)

m(s)m′′(s)− γm′(s)2
. (40)

Endogenous Credit Limit and the Dynamics of Liquidity s. Given policy rules c(s),

i(s), φ1(s), and φ2(s), and using Ito’s formula, we show that in the interior region, where

st > s , liquidity s evolves according to the accumulation equation:

dst = µs(st)dt+ σs1(st)dZ1,t + σs2(st)dZ2,t , (41)

where the drift function µs( · ) is given by:

µs(s) = A− i(s)− g(i(s)) + φ2(s)(µ2 − r)− c(s)

+(r + δK − i(s))s− (εKσ
s
1(s) + ρσKσ

s
2(s)), (42)
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and the idiosyncratic volatility σs1( · ) and systematic volatility σs2( · ) for s are given by

σs1(s) = (φ1(s)− s)εK , (43)

σs2(s) =
(
φ2(s)− sβFB

)
σ2 . (44)

Having described the dynamics for s in the interior region st > s, we next turn to

the endogenous credit limit s. Substituting the value function (35) into (31) and using

homogeneity, we obtain the following condition for the credit limit s:

m(s) = αm(0) . (45)

An important first observation is that the constraint st ≥ s generally does not bind. The

reason is that, as in the buffer-stock savings models of Deaton (1991) and Carroll (1997)

for household finance, the risk-averse entrepreneur manages her liquid holdings s with the

objective of smoothing her consumption. Setting st = s for all t is costly in terms of

consumption smoothing. This is why risk aversion plays an important role in our model of

liquidity and risk management.

Second, while the credit constraint st ≥ s rarely binds, it has to be satisfied with prob-

ability one. Only then can we ensure that the credit limit is never exceeded and that the

entrepreneur does not default. Given that s is a diffusion process and hence is continuous, to

ensure that the firm’s debt amount does not exceed its credit limit |s|, intuitively speaking,

we must require that the volatility at s is zero, so that

σs1(s) = 0 and σs2(s) = 0 . (46)

The above boundary conditions are expressed in terms of volatility functions σs1( · ) and

σs2( · ), which is somewhat unconventional but it helps to bring out the intuition. More

conventionally, we can express these boundary conditions at s equivalently in terms of the

value function and its derivatives. For our problem, (46) boils down to

lim
s→s

m′′(s) = −∞ . (47)
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We can also show this result via the regulated Brownian motion argument as Proposition 7

on page 84 in Harrison (1985).13 Moreover, we need to verify that the drift µs(s) given in

(42) is non-negative at s, so that liquidity s is weakly increasing at s with probability one.

Finally, as s→∞, the firm is no longer credit constrained so that the limited-commitment

certainty equivalent value approaches the first-best market value:

lim
s→∞

m(s) = qFB + s . (48)

The following proposition summarizes the limited-commitment solution for m(s).

Proposition 4 In the interior region s > s, m(s) satisfies the following ODE:

0 =
m(s)

1− γ

[
γχm′(s)

γ−1
γ − ζ

]
+ [rs+ A− i(s)− g(i(s))]m′(s) + (i(s)− δ)(m(s)− sm′(s))

−
(
γσ2

K

2
− ρησK

)
m(s)2m′′(s)

m(s)m′′(s)− γm′(s)2
+

η2m′(s)2m(s)

2(γm′(s)2 −m(s)m′′(s))
, (49)

subject to the FOCs (37), (38), (39), and (40), the boundary condition (47) at s, where s

satisfies (45), and condition (48).

Before continuing with a quantitative illustration of the entrepreneur’s problem under

limited commitment it is helpful to underline how the entrepreneur’s dynamic liquidity and

risk-management problem can be formulated equivalently as an optimal contracting problem

between a diversified investor and a risk-averse entrepreneur subject to inalienability-of-

human-capital constraints.

5 Equivalent Optimal Contract

Consider the long-term contracting problem between infinitely-lived fully diversified investors

(the principal) and a financially constrained, infinitely-lived, risk-averse entrepreneur (the

agent). Suppose that the output process Yt is publicly observable and verifiable. In addition,

suppose that the entrepreneur cannot privately save.14 The contracting game begins at time

13See Ai and Li (2015) for similar boundary conditions and proofs for their optimal contracting problem.
14This is a standard assumption in the dynamic moral hazard literature (Ch. 10 in Bolton and Dewatripont,

2005). Di Tella and Sannikov (2016) develop a contracting model with hidden savings for asset management.
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0 with investors making a take-it-or-leave-it long-term contract offer to the entrepreneur.

The contract specifies an investment process {It; t ≥ 0} and a compensation/consumption

process {Ct; t ≥ 0} to the entrepreneur, both of which depend on the entire history of

idiosyncratic and aggregate shocks {Z1,t, Z2,t; t ≥ 0}.

Because investors are full diversified and markets are complete, their time-0 problem is to

choose investment {It; t ≥ 0} and consumption {Ct; t ≥ 0} for the entrepreneur to maximize

the risk-adjusted discounted value of future cash flows:

F (K0, V0) = max
C, I

E0

[∫ ∞
0

Mt(Yt − Ct)dt
]
, (50)

where M is the same unique SDF given in (9) and M0 = 1. The optimization is subject

to the entrepreneur’s time-0 participation constraint and her inalienability-of-human-capital

constraints at all t, to which we now turn.

Inalienability-of-Human-Capital Constraints. The entrepreneur’s human capital is

inalienable and she can at any time leave the firm. Let V̂ (Kt) denote her (endogenous)

outside payoff. Then the inalienability-of-human-capital constraint at time t is given by:

Vt ≥ V̂ (Kt) , t ≥ 0. (51)

Note that under this formulation the entrepreneur’s inside value, Vt, and outside option

value, V̂ (Kt), are both tied to the state variable K. This is why the entrepreneur’s human

capital is risky. Next, we determine V̂ (Kt) as follows: Consider the entrepreneur’s next

best-alternative which is to manage a new firm with size αKt and no liabilities. Let V ( · ) be

the manager’s value function in this new firm. Assume that investors in the new firm make

zero profits under competitive markets, so that the following break-even condition holds:

F (αKt, V (αKt)) = 0 . (52)

The entrepreneur’s outside option value then satisfies:

V̂ (Kt) = V (αKt) . (53)
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In words, equation (53) means that when the entrepreneur abandons a firm of size Kt,

the new venture she can run is identical to the one she has abandoned, but the initial

capital stock that investors in the new venture are willing to provide is only equal to αKt.

Moreover, when investors in the new venture provide αKt, they just break even, as stated

in (52). Finally, at the moment of contracting at time 0 the entrepreneur has a reservation

utility V ∗0 , so that the optimal contract must satisfy the participation constraint:

V0 ≥ V ∗0 . (54)

The time-0 participation constraint (54) is always binding under the optimal contract. Oth-

erwise, investors can always increase their payoff by lowering the entrepreneur’s consumption

and still satisfy all other constraints. However, the entrepreneur’s inalienability-of-human-

capital constraints (51) are only occasionally binding, as investors dynamically trade off the

benefits of providing her with consumption smoothing and the benefits of extracting higher

contingent payments from the firm.

We may simplify the contracting problem by summarizing the entire history of the con-

tract via the entrepreneur’s promised utility Vt conditional on the history up to time t. Under

the optimal contract the dynamics of the agent’s promised utility can then be written in the

recursive form below. The sum of the agent’s utility flow ζU(Ct)dt and change in promised

utility dVt has the expected value ζVtdt, or:

Et [ζU(Ct)dt+ dVt] = ζVtdt . (55)

We can write the stochastic differential equation (SDE) for dV implied by (55) as the

sum of: i) the expected change (i.e., drift) term Et [dVt]; ii) a martingale term driven by

the Brownian motion Z1; and iii) a martingale term driven by the Brownian motion Z2.

Accordingly, we may write the dynamics of the promised utility process Vt as follows:

dVt = ζ(Vt − U(Ct))dt+ x1,tVtdZ1,t + x2,tVtdZ2,t , (56)

where {x1,t; t ≥ 0} and {x2,t; t ≥ 0} control the idiosyncratic volatility and systematic

volatility of the entrepreneur’s promised utility V , respectively.

Finally, we can write the investors’ objective as a value function F (K,V ) with two state
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variables: i) the entrepreneur’s promised utility V ; and, ii) the venture’s capital stock K.

The optimal contract then specifies investment I, compensation C, idiosyncratic risk expo-

sure x1 and systematic risk exposure x2 to maximize the investor’s risk-adjusted discounted

value of cash flows, as in (50), subject to the entrepreneur’s inalienability-of-human-capital

constraints (51) and the initial participation constraint (54). Applying Ito’s Lemma to

F (K,V ), we obtain the following HJB equation for investors’ value F (K,V ):

rF (K,V ) = max
C, I, x1, x2

{(Y − C) + (I − δK)FK + [ζ(V − U(C))− x2ηV ]FV

+
σ2
KK

2FKK
2

+
(x2

1 + x2
2)V 2FV V
2

+ (x1εK + x2ρσK)KV FV K

}
. (57)

To formulate the contract in terms of corporate liquidity and risk exposures it is helpful

to express the entrepreneur’s promised utility in units of consumption rather than utils. This

involves mapping the promised utility V into the promised (certainty-equivalent) wealth W ,

defined as the solution to the equation U(bW ) = V , where b is the constant given by (17). We

can further reduce the investor’s problem to one dimension, with state variable w = W/K,

by writing the investor’s value function F (K,V ) as:

F (K,V ) ≡ F (K,U(bW )) = P (K,W ) = p(w) ·K, (58)

where p(w) is the solution to the ODE provided below in Proposition 5.

Proposition 5 In the region w > w, the investors’ value p(w) solves:

rp(w) = max
i( · )

A− i(w)− g(i(w)) +
χγ

1− γ
(−p′(w))

1/γ
w + (i(w)− δ)(p(w)− wp′(w))

+
ζ

1− γ
wp′(w) +

(
γσ2

K

2
− ρησK

)
w2p′(w)p′′(w)

wp′′(w) + γp′(w)
− η2

2

wp′(w)2

wp′′(w) + γp′(w)
, (59)

subject to the following boundary conditions:

lim
w→∞

p(w) = qFB − w , (60)

p(w/α) = 0 , (61)

lim
w→ w

p′′(w) = −∞ . (62)
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Condition (60) requires that p(w) attains the first best as w → ∞, and hence, the sum

of the entrepreneur’s w and the investors’ value p(w) equals Tobin’s qFB. Condition (61)

describes the investors’ zero-NPV condition. Finally, Condition (62) is the requirement of

equilibrium retention, which involves setting both the idiosyncratic and systematic volatilities

of w at w to zero. Next, we summarize optimal policy functions.

Proposition 6 Given p(w), the investment-capital ratio i, the consumption-capital ratio c,

and risk management policies (x1, x2) are respectively given by

g′(i(w)) = p(w)− wp′(w)− 1 , (63)

c(w) = χ (−p′(w))
1/γ

w , (64)

x1(w) =
(1− γ)εKwp

′′(w)

wp′′(w) + γp′(w)
, (65)

x2(w) =
(1− γ)(ρσKwp

′′(w) + ηp′(w))

wp′′(w) + γp′(w)
. (66)

Equivalence. The optimal liquidity and risk management problem in Section 4 is equiva-

lent to the optimal contracting problem in this section. As illustrated in Table 1, we have

s = −p(w) and w = m(s) , (67)

implying −p ◦m(s) = s. This equation transparently encapsulates that corporate liquidity

is the negative of investors’ valuation of the entrepreneur’s promised certainty equivalent

wealth. Finally, the initial stock of liquidity is S0 = s0K where s0 is pinned down by the

time-0 binding participation constraint given by (54). We provide a proof of the equivalence

between the two problems in the Appendix.

6 Quantitative Analysis

In this section, we highlight both qualitative and quantitative implications of our model.
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6.1 Parameter Choices and Calibration

While our model is equally tractable for any homogeneous adjustment cost function g(i),

for numerical and illustrational simplicity, we choose the following widely-used quadratic

adjustment cost function:

g (i) =
θi2

2
, (68)

which gives explicit formulae for Tobin’s q and optimal i in the first-best MM benchmark:

qFB = 1 + θiFB, and iFB = r + δ −
√

(r + δ)2 − 2
A− (r + δ)

θ
. (69)

For the quadratic adjustment cost function given by (68), the convergence condition (22) for

the first best setting implies the following:

(r + δ)2 − 2
A− (r + δ)

θ
≥ 0 . (70)

Our model with constant productivity is parsimonious with eleven parameters. We take

the widely used value for the coefficient of relative risk aversion, γ = 2. We set the equity

risk premium to (µ2 − r) = 6% and the annual volatility of the market portfolio return to

σ2 = 20% implying that the Sharpe ratio η = (µ2 − r)/σ2 = 30%, all standard in the asset

pricing literature. We choose the annual risk-free interest rate to be r = 5% and set the

entrepreneur’s discount rate equal to the risk-free rate, ζ = r = 5%.

For the production-side parameters, we use estimates in Eberly, Rebelo, and Vincent

(2009) and set the annual productivity A at 20% and the annual volatility of capital shocks at

σK = 20%. We set the correlation between the market portfolio return and the depreciation

shock ρ = 0.2, which implies that the idiosyncratic volatility of the depreciation shock is

εK = 19.6%. We fit the first-best values of qFB and iFB to the sample averages by setting

the adjustment cost parameter at θ = 2 and the (expected) annual capital depreciation rate

at δK = 11% both of which are in line with estimates in Hall (2004) and Riddick and Whited

(2009). These parameters imply that qFB = 1.264, iFB = 0.132, and βFB = 0.2. Finally, we

let α = 0.8, in line with estimates reported in Li, Whited, and Wu (2016). The parameter

values for our baseline case are summarized in Table 2.
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Table 2: Parameter Values

This table summarizes the parameter values for our baseline model with no productivity
shocks. Whenever applicable, parameter values are annualized.

Parameters Symbol Value

Risk-free rate r 5%
The entrepreneur’s discount rate ζ 5%
Correlation ρ 20%
Excess market portfolio return µ2 − r 6%
Volatility of market portfolio σ2 20%
The entrepreneur’s relative risk Aversion γ 2
Capital depreciation rate δK 11%
Volatility of capital depreciation shock σK 20%
Quadratic adjustment cost parameter θ 2
Firm’s productivity A 20%
Inalienability-of-human-capital parameter α 80%

6.2 Investors’ Value is the Entrepreneur’s Liability: p(w) = −s

We begin by plotting the solution for respectively p(w) and m(s).

Promised Wealth w and Investors’ Value p(w). Panels A and B of Figure 1 plot p (w)

and p′ (w). Under the first best, compensation to the entrepreneur is simply a one-to-one

transfer away from investors, as we see from the dotted lines: p(w) = qFB − w = 1.264− w
and p′(w) = −1. Under inalienability of human capital, p(w) is decreasing and concave in

w. That is, as w increases the entrepreneur is less constrained. In the limit, as w → ∞,

p(w) approaches qFB − w, and p′(w) → −1, so that the first-best payoff obtains when the

entrepreneur is unconstrained. However, the entrepreneur’s inability to fully commit not to

walk away ex post imposes a lower bound w on w. For our parameter values, w ≥ w = 0.944.

That is, the entrepreneur receives at least 94.4% in promised certainty equivalent wealth for

each unit of capital stock, which is greater than α = 0.8.

Finally, note that despite being fully diversified, investors behave in an under-diversified

manner due to the entrepreneur’s inalienability-of-human-capital constraints. This is re-

flected in the concavity of investors’ certainty equivalent value function p(w). This concav-
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Figure 1: Investors’ value p(w), marginal value p′(w), the entrepreneur’s certainty
equivalent wealth m(s) and marginal value of liquidity m′(s). For the limited-
commitment case, w ≥ w = 0.944, and p(w) is decreasing and concave. Equivalently,
s ≥ s = −0.224, and m(s) is increasing and concave. The dotted lines depict the First-Best
results: p(w) = qFB − w, p′(w) = −1, m(s) = qFB + s, and m′(s) = 1 with qFB = 1.264.

ity property is an important difference of the limited commitment problem compared to the

first-best benchmark. Next, we turn to the solution for the entrepreneur’s liquidity and risk

management problem.

Liquidity s and the Entrepreneur’s Certainty-Equivalent Wealth m(s). Panels

C and D of Figure 1 plot m(s) and the marginal value of liquidity m′(s). As one may

expect m(s) is increasing and concave in s. The higher the liquidity s the less constrained

is the entrepreneur, so that m′(s) decreases (m′′(s) < 0). In the limited-commitment case,

m(s) approaches qFB + s and m′(s) → 1 as s → ∞. The entrepreneur’s LOC limit is

s = −p(w) = −p(0.944) = −0.224.
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Note that (s,m(s)) is the “mirror-image” of (−p(w), w). To be precise, rotating Panel A

counter-clock-wise by 90o (by turning the original x-axis (i.e., w) into the new y-axis m(s))

and adding a minus sign to the horizontal x-axis (i.e., −p(w) = s is the new x-axis) produce

Panel C.

6.3 Investment, Consumption, Liquidity, and Risk Management

We first analyze the firm’s investment decisions, then the entrepreneur’s optimal consump-

tion, and finally the idiosyncratic and systematic risk-exposure policies.

Investment, Marginal Private q, and Marginal (Private) Value of Liquidity m′(s).

The FOC for investment is:

1 + g′(i(s)) =
JK
JS

=
MK

MS

=
m(s)− sm′(s)

m′(s)
, (71)

where the second equality follows from the definition of the value function in (35), and the

last equality follows from the homogeneity property of M(K,S) in K. Under perfect capital

markets the entrepreneur’s certainty equivalent wealth is given by M(K,S) = m(s) · K =

(qFB + s) ·K and the marginal value of liquidity is MS = 1 at all times. Hence in this case,

the FOC (71) specializes to the classical Hayashi condition for optimal investment, where

the marginal cost of investing 1 + g′(i(s)) equals marginal q.

Under limited commitment, MS > 1 in general and the FOC (71) then states that the

marginal cost of investing equals the ratio between (a) MK , the marginal private q, and (b)

MS, the marginal private value of liquidity. Unlike in the classical q theory of investment,

financing is costly as reflected by MS > 1.

Figure 2 illustrates the effect of inalienability of human capital on investment i(s) and

marginal private q. The dotted lines in Panels A and B of Figure 2 give the first-best

iFB = 0.132 and qFB = 1.264, respectively. With limited commitment, i(s) is lower than the

first-best benchmark iFB = 0.132 for all s, and increases from −0.043 to iFB = 0.132 as s

increases from the left boundary s = −0.224 towards ∞. This is to be expected: increasing

financial slack mitigates the severity of under-investment for a financially constrained firm.

When S > 0, marginal private q, MK = m(s)− sm′(s), increases with s, which is consistent
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Figure 2: The investment-capital ratio i(s), and marginal private q, MK = m(s) −
sm′(s). For the limited-commitment case, the firm always under-invests and i(s) increases
with s. The dotted line depicts the full-commitment MM results where the marginal equals
qFB = 1.264 and the first-best investment-capital ratio iFB = 0.132.

with our intuition. The higher the level of liquidity s, the higher is marginal private q. Note

however that, surprisingly, MK decreases with s from 1.25 to 1.20 in the credit region s < 0.

What is the intuition? When the firm is financing its investment via credit at the margin

(when S < 0), increasing K moves a negative-valued s closer to the origin thus mitigating

financial constraints, which is an additional benefit of accumulating capital.15

But why does a high marginal-q firm invest less in the credit region s < 0? And how do

we reconcile an increasing investment function i(s) with a decreasing marginal q function,

MK = m(s) − sm′(s) in the credit region s < 0? The reason is simply that in the credit

region (s < 0) a high marginal-q firm also has a high m′(s) reflecting a high marginal

financing cost. When s < 0, marginal q and marginal financing cost m′(s) are perfectly

correlated. And investment is determined by the ratio between the marginal q and m′(s)

as we have noted. At the left boundary s = −0.224 marginal q is 1.25 and m′(s) is 1.37,

both of which are high. Together they imply that it is optimal to engage in asset sales, as

i(−0.224) = ((1.25/1.37)−1)/2 = −0.043 < 0, which is significantly lower than the first-best

iFB = 0.132.

Taking the derivative of i(s) in (71) with respect to s, we find that the investment-cash

15Formally, this result follows from dMK/ds = −sm′′(s) < 0 when s < 0 and from the concavity of m(s).
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sensitivity is positive as

i′(s) = −1

θ

m(s)m′′(s)

m′ (s)2 > 0. (72)

This result follows from the concavity of m(s) both when s ≥ 0 and s < 0, and explains why

investment is increasing in s as shown in Panel A.
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Figure 3: Consumption-capital ratio c(s) and the MPC c′(s). For the limited-
commitment case, c(s) is increasing and concave in s, but is lower than the First-Best
benchmark cFB(s). The dotted lines depict the First-Best results: c(s) = χ(s + qFB) and
the MPC c′(s) = χ = 6.13% with qFB = 1.264.

Optimal Consumption and the MPC. Figure 3 plots consumption c(s), and the MPC

c′(s) in Panels A and B respectively. The dotted lines give the first-best results: c(s) =

χ(s + qFB) and MPC c′(s) = 6.13%. The solid line gives the entrepreneur’s consumption,

which is lower than the first-best benchmark. As one might expect, the higher the financial

slack s the higher is c(s) as seen in the figure. Moreover, we have m(s) → qFB + s and

the marginal value of liquidity m′(s) → 1 as s → ∞, so that c(s) → χ
(
qFB + s

)
, the

permanent-income consumption benchmark. Panel B shows that the MPC c′(s) decreases

significantly with s and approaches the permanent-income benchmark χ = 6.13% as s→∞.

Thus, financially constrained entrepreneurs deep in debt (with s close to s) have MPCs that

are substantially higher than the permanent-income benchmark, consistent with empirical

evidence documented by Parker (1999) and Souleles (1999). Next we turn to the firm’s

idiosyncratic and systematic risk exposures.
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Figure 4: Idiosyncratic risk hedge φ1(s) and market portfolio allocation φ2(s).
For the limited-commitment case, the idiosyncratic risk hedge φ1(s) < 0, its absolute size
|φ1(s)| is increasing and concave, and is lower than the First-Best result |φFB1 (s)|. The
market portfolio allocation φ2(s) is also increasing and concave, and lower than the First-
Best result φFB2 (s). The dotted lines depict the First-Best results: φFB1 (s) = −qFB and
φFB2 (s) = −0.2× qFB + 0.75× (s+ qFB) where qFB = 1.264.

Dynamic Risk Management and Market Risk Exposures. Panel A of Figure 4 plots

the hedging demand against idiosyncratic shocks φ1(s). Under the first best, the entrepreneur

is fully insured against idiosyncratic business risk, by taking a short position φ1(s) = −qFB =

−1.264 perfectly offsetting the entrepreneur’s long position in the risky venture. However,

with limited commitment the entrepreneur cannot fully hedge her idiosyncratic risk exposure.

How does φ1(s) depend on s in this case? As the firm becomes more constrained (s decreases)

the entrepreneur decreases her hedging demand |φ1(s)|. In the limit, when s = s, the

entrepreneur must turn off the idiosyncratic volatility by setting φ1(s) = s = −0.224 in

order to survive. In the other direction, as s → ∞ the entrepreneur can fully diversify

the idiosyncratic business risk by setting lims→∞ φ1(s) = −qFB = −1.264, attaining the

First-Best perfect-insurance value-maximizing benchmark. In simple economic terms, when

s is low, risk management is about guaranteeing the survival of the firm by turning off

the volatility of s, while when s is large, the firm’s idiosyncratic risk management is all

about eliminating exposure to idiosyncratic risk. Overall, a less constrained firm has a

larger hedging position |φ1(s)| (even after controlling for firm size.) Rampini, Sufi, and
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Viswanathan (2014) provide empirical evidence supporting this result.16 Note that here

liquidity s and hedging φ1(s) are complements.

Panel B plots the market portfolio position φ2(s). Under the first best, the entrepreneur

wants to invest like a fully-diversified mean-variance investor, as in Merton (1971). How

does she achieve this goal given her significant non-diversifiable exposure to her business? In

addition to completely off-loading her idiosyncratic risk exposure by setting φFB1 (s) = −qFB,

she also effectively “sells” her business at the market price qFB per unit of capital by taking a

short position −βFBqFB in the market portfolio. Finally, she behaves as a standard Merton

investor with total net worth of St+q
FBKt, who optimally allocates a fixed fraction, η/(γσ2),

of her entire net worth in the market portfolio.

With limited commitment, the entrepreneur cannot achieve the desired first-best exposure

to the market portfolio for this would result in excessively volatile liquidity s. Indeed, when

s = s, the entrepreneur must also turn off the systematic volatility by setting φ2(s) =

βFBs = −0.045 in order to survive. More generally, for a highly constrained firm, much of

risk management is about survival. In contrast, as s→∞ the firm is flush with liquidity and

the entrepreneur behaves as a mean-variance Merton investor by letting φ2(s) → φFB2 (s).

7 Two-Sided Limited Commitment

Under only one-sided limited commitment, the optimal policy is such that investors may

incur losses when w is large. As Figure 1 illustrates, p(w) < 0 when w > 1.18. To be able

to retain the entrepreneur, investors then promise such a high w to the entrepreneur that

they end up committing to making losses in these states of the world. But, what if they

cannot commit to such loss-making promises to the entrepreneur? We explore this issue in

this section and characterize the solution when neither the entrepreneur nor investors are

able to commit.

The main change relative to the one-sided commitment problem is that the upper bound-

ary is now s = −p(w) = 0, since any promise of strictly positive savings s > 0 is not credible,

as this involves a negative continuation value for investors. As it turns out, solving the two-

16Li, Whited, and Wu (2016) structurally estimate a model featuring taxes and limited commitment (along
the lines of Rampini and Viswanathan (2013)), and provide empirical evidence in support of a limited-
commitment-based collateral mechanism.
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sided limited commitment problem does not involve major additional complexities. It implies

the following conditions at the new upper boundary s = 0:

σs1(0) = σs2(0) = 0 . (73)

Using the same argument as for (47), we may equivalently express (73) as

lim
s→0

m′′(s) = −∞ . (74)

Moreover, we need to verify that the drift µs(s) given in (42) is weakly negative at s = 0,

so that liquidity s is weakly decreasing with probability one at s = 0.
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Figure 5: Idiosyncratic risk hedge φ1(s) and market portfolio allocation φ2(s) under
two-sided limited-commitment case. The endogenous upper boundary s = 0. For the
two-sided limited-commitment case, neither φ1(s) nor φ2(s) is monotonic in s.

Liquidity Buffer and Risk Management. Figure 5 plots the idiosyncratic risk hedge

position φ1(s) and the market portfolio allocation φ2(s) for both one-sided and two-sided

limited commitment cases. It shows that in the two-sided limited-commitment case, s lies

between s = −0.25 and s = 0, so that the entrepreneur has a larger LOC limit of |s| = 0.25.

But a higher LOC limit |s| comes with a lower promised utility. Essentially, the additional

investor limited-liability condition limits the entrepreneur’s self-insurance capacity. Remark-

ably, under two-sided limited commitment the LOC limit is larger. In other words, a firm
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with a larger debt capacity is not necessarily a less constrained firm. Moreover, it may have

a lower value!

Figure 5 illustrates that both φ1(s) and φ2(s) are non-monotonic in s in the two-sided

limited-commitment case. The reason is that the volatilities σs1(s) and σs2(s) must be turned

off at both s = −0.25 and s = 0 to prevent the entrepreneur and investors from separating.

This is achieved by setting, respectively, φ1(s) = s = −0.25, φ2(s) = βFBs = −0.05, and

φ1(0) = 0, φ2(0) = 0, as implied by the volatility boundary conditions for σs1(s) and σs2(s)

at both boundaries.

Investment i(s) and Entrepreneur’s Certainty Equivalent Wealth m(s). Panel A

of Figure 6 reports the two-sided limited-commitment solution for investment. Compared

with the First-Best benchmark, the firm under-invests when s < −0.13, but over-invests

when −0.13 < s ≤ 0. Whether it under-invests or over-invests depends on the net effects

of the entrepreneur’s limited-commitment and investors’ limited-liability constraints. For

sufficiently low values of s (when the entrepreneur is deep in debt) the entrepreneur’s con-

straint matters more and hence the firm under-invests. When s is sufficiently close to zero,

investors’ limited-liability constraint has a stronger influence on investment. To ensure that

s will not grow the entrepreneur needs to transform liquid into illiquid savings. This causes

the firm to over-invest relative to the first-best.

Phrased in terms of the equivalent optimal contracting problem, the intuition is as follows.

Given that the entrepreneur cares about the total compensation W = w ·K and given that

investors are constrained by their ability to promise the entrepreneur w beyond an upper

bound w, (in this case, w = m(0) = 0.843), investors reward the entrepreneur along the

extensive margin, firm size K, which induces over-investment but allows the entrepreneur to

build more human capital.

Panel B of Figure 6 plots the entrepreneur’s certainty equivalent wealth m(s). As one

would expect, m(s) increases with s, but m(s) for the two-sided case is much lower than

that for the one-sided case, as the additional constraints on the investors’ side make liquidity

costly and lower the total surplus.
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Figure 6: Optimal investment-capital ratio i(s) and the entrepreneur’s certainty
equivalent wealth m(s) under the two-sided limited-commitment case. Compared
with the First-Best benchmark, for the two-sided limited-commitment case, liquidity s lies
in the range (s, s) = (−0.249, 0), and the firm under-invests when s is sufficiently close
to s = −0.249 and over-invests when s is sufficiently close to s = 0. The firm’s LOC
limit for the two-sided limited-commitment case |s| = 0.249 is larger than the LOC limit
|s| = 0.224 for the one-sided limited-commitment case, but the firm cannot save for the
two-sided limited-commitment case.

8 Persistent Productivity Shocks

In this section, we extend the model by introducing persistent productivity shocks that

have first-order implications for corporate liquidity and risk management. The firm faces

two conflicting forces in the presence of such shocks. First, as Froot, Scharfstein and Stein

(1993) and Rampini and Viswanathan (2010) have emphasized, the firm will want to make

sure that it has sufficient liquidity and funding capacity to be able to take full advantage

of the investment opportunities that become available when productivity is high. To do so,

the firm may want to take hedging positions that allow it to transfer funds from the low

to the high productivity state. Second, the firm also wants to smooth the entrepreneur’s

consumption across productivity states, allowing the entrepreneur to consume a higher share

of earnings in the low than in the high productivity state. To do so, the firm will need to

ensure that it has sufficient liquidity and funding capacity in the low productivity state.

This may require taking hedging positions such that funds are transferred from the high to

the low productivity state.
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Which of these two forces dominates? We show that even for extreme parameter values

for the productivity shocks the consumption smoothing effect dominates. Part of the reason

is that, when productivity is high, the firm’s endogenous credit limit is also high, so that

transferring funds from the low to the high productivity state is not that important. In

contrast, the consumption smoothing benefits of transferring funds from the high to the low

productivity state are significant.

Without much loss of generality we model persistent productivity shocks {At; t ≥ 0} as

a two-state Markov switching process, At ∈
{
AL, AH

}
with 0 < AL < AH . We denote by

λt ∈
{
λL, λH

}
the transition intensity from one state to the other, with λL denoting the

intensity from state L to H, and λH the intensity from state H to L. The counting process

{Nt; t ≥ 0} (starting with N0 = 0) keeps track of the number of times the firm has switched

productivity state up to time t; it increases by one whenever the state switches from either

H to L or from L to H: dNt = Nt −Nt− = 1 if and only if At 6= At−, otherwise, dNt = 0.

In the presence of such shocks the entrepreneur will want to purchase or sell insurance

against stochastic changes in productivity. We characterize the optimal insurance policy

against such shocks and how investment, consumption, risk management, and the firm’s

credit limit vary with the firm’s productivity. For brevity, we only consider the one-sided

limited-commitment case where productivity shocks are purely idiosyncratic.17

Productivity Insurance Contract. Consider the following insurance contract offered at

current time t−. Over the time interval dt = (t−, t), the entrepreneur pays the unit insurance

premium ξt−dt to the insurance counterparty in exchange for a unit payment at time t if and

only if At 6= At− (i.e., dNt = 1). That is, the underlying event for this insurance contract is

the change in productivity. Under our assumptions of perfectly competitive financial markets

and idiosyncratic productivity shocks, the actuarially fair insurance premium is given by the

intensity of the change in productivity state: ξt− = λt−.18

Let Πt− denote the number of units of insurance purchased by the entrepreneur at time

t−. We refer to Πt− as the insurance demand. If Πt− < 0, the firm sells insurance and

17We have analyzed more general situations that incorporate systematic productivity shocks and two-
sided limited-commitment. The generalized liquidity and risk management problem in this section also has
an equivalent optimal contracting formulation. This material is available upon request.

18We can generalize the model to allow for a systematic risk premium. This requires using the standard
change of measure technique of choosing different jump intensities under the physical measure and the
risk-neutral measure. Results are available upon request.
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collects insurance premia at the rate of λt−Πt−. Liquidity St then accumulates according to:

dSt = (rSt + Yt − Ct + Φ2,t(µ2 − r)− λt−Πt−) dt+Φ1,tεKdZ1,t+Φ2,tσ2dZ2,t+Πt−dNt . (75)

The first term in (75) is the expected rate of return, net of the insurance premium payment

λt−Πt−, from investing in respectively, the risk-free asset and the two risky financial assets.

The second and third terms are the standard diffusion terms associated with the two risky

financial assets, and the last term is the insurance payment contingent on the change in

productivity state.

We write the solution for the firm’s value as a pair of state-contingent value functions

J(K,S;AL) ≡ JL(K,S) and J(K,S;AH) ≡ JH(K,S), which solve two inter-linked HJB

equations, one for each state.19 The HJB equation in state L is thus:20

ζJL(K,S) = max
C,I,Φ1,Φ2,ΠL

ζU(C) + (I − δKK)JLK +
σ2
KK

2

2
JLKK

+
(
rS + Φ2(µ2 − r) + ALK − I −G(I,K)− C − λLΠL

)
JLS

+
(
ε2KΦ1 + ρσKσ2Φ2

)
KJLKS +

(εKΦ1)2 + (σ2Φ2)2

2
JLSS

+λL[JH(K,S + ΠL)− JL(K,S)] . (76)

Two important features differentiate (76) from the HJB equation (11) in the baseline case.

First, the drift term involving the marginal utility of liquidity JLS now includes the insurance

payment −λLΠL. Second, the last term in (76) captures the endogenous adjustment of S by

the amount of ΠL and the corresponding change in the value function following a productivity

change from AL to AH .

The inalienability-of-human capital constraint must also hold at all time t in both pro-

ductivity states, so that

St ≥ S(Kt;At) , (77)

or equivalently,

st ≥ s(At) . (78)

19For contracting models involving jumps and/or regime switching, see Biais, Mariotti, Rochet, and Vil-
leneuve (2010), Piskorski and Tchistyi (2010), and DeMarzo, Fishman, He and Wang (2012), among others.

20For brevity, we omit the coupled equivalent HJB equation for J(K,S;AH) ≡ JH(K,S) in state H.
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Naturally, the firm’s time-t endogenous credit limit |s(At)| depends on its productivity At.

The entrepreneur determines her optimal insurance demand ΠL in state L by differenti-

ating (76) with respect to ΠL and setting ΠL to satisfy the FOC:

JLS (K,S) = JHS (K,S + ΠL) , (79)

provided that the solution ΠL to the above FOC satisfies the (state-contingent) condition:

S + ΠL ≥ SH . (80)

Otherwise, the entrepreneur sets the insurance demand so that ΠL = SH −S , in which case

the firm will be at its maximum debt level SH when productivity switches from AL to AH .21
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Figure 7: Insurance demand: πH(s) and πL(s). State-H productivity is AH = 0.25
in both panels. In Panel A, State-L productivity is AL = 0.14 and πL(s) = sH − s when
−0.186 < s < −0.114. In Panel B, State-L productivity is AL = 0.05 and πL(s) = sH − s
when −0.131 < s < 0.039.

Quantitative Analysis. We consider two sets of parameter values. The first set is such

that AH = 0.25, AL = 0.14, and λL = λH = 0.2, with all other parameter values as in Table

2. The transition intensities (λH , λL) = (0.2, 0.2) imply that the expected duration of each

21There is an equivalent set of conditions characterizing ΠH in state H, which we omit.
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state is five years. The second set of parameter values is identical to the first, except that

AL = 0.05. That is, productivity in the low state, AL, is much lower (0.05 instead of 0.14).

Figure 7 plots the entrepreneur’s insurance demand πH(s) as the solid line, and πL(s)

as the dashed line. We use sH and sL to denote s(At) when At = AH and At = AL, re-

spectively. Panel A plots the insurance demand in both states when productivity differences

are (AH − AL)/AH = (0.25− 0.14)/0.25 = 44%, while Panel B plots the insurance demand

when productivity differences are very large, (AH − AL)/AH = (0.25 − 0.05)/0.25 = 80%.

Remarkably, under both sets of parameter values the firm optimally buys insurance in state

H, πH(s) > 0, and sells insurance in state L, πL(s) < 0. This result is not obvious a priori,

for when productivity differences are large the benefit from transferring liquidity from state

L to H and thereby taking better advantage of investment opportunities when they arise,

could well be the dominant consideration for the firm’s risk management. But that turns out

not to be the case. Even when productivity differences are as large as 80%, the dominant

consideration is still to smooth the entrepreneur’s consumption. Moreover, a comparison of

Panels A and B reveals that for the larger productivity differences, the insurance demand is

also larger, with πH(s) exceeding 0.2 everywhere in Panel B, but remaining well below 0.2

in Panel A, and πL(s) attaining values lower than −0.25 in Panel B (when s + πL ≥ sH is

not binding), while πL(s) is always larger than −0.2 in Panel A.22

9 Conclusion

The theory of corporate liquidity and risk management we have developed is particularly

relevant for industries where an essential input is the human capital and talent of their em-

ployees, e.g., information technology. The survival of these companies rests on their ability to

retain talent. We have shown that the optimal way for the firm to retain talent is by offering

both current pay and future promised compensation. But the promised future compensa-

tion must be credible, which means that the firm must back these promises with corporate

savings, or liquidity. This is the main motivation for the firm’s liquidity management in our

model which we formalize this insight via an optimal contracting formulation. Importantly,

it is not sufficient for the firm to back up promises with physical capital accumulation alone,

22These results are robust and hold for other more extreme parameter values, which for brevity we do not
report.
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because physical capital while productive is illiquid and costly to unwind. Although more

physical capital does expand the firm’s borrowing capacity, by extending its line of credit

limit, it is suboptimal for the firm to fully draw down its line of credit, for then the firm’s

ability to honor its future compensation promises is compromised. In addition, corporate

risk management complements the firm’s liquidity management by reducing unnecessary ex-

posures of the firm’s savings to idiosyncratic risk but also capturing risk-adjusted excess

returns on behalf of key employees and thereby enhancing the firm’s ability to make credible

future promises.

Our model also generalizes existing theories of corporate investment, financing, liquidity

and risk management, by adding optimal compensation of the entrepreneur to the stew.

Our analysis, thus, contributes to the literature on executive compensation, which typi-

cally abstracts from financial constraints (see Frydman and Jenter, 2010, and Edmans and

Gabaix, 2016, for recent surveys). Our analysis brings out an important positive link be-

tween compensation and corporate liquidity, and helps explain why companies typically cut

compensation, scale back investment, and reduce risk management positions, when liquidity

is tight. It also explains why companies simultaneously sell insurance. What has generally

been interpreted as a form of gambling for resurrection–selling insurance by financially con-

strained firms–can be understood under our analysis as an efficient attempt by the firm to

relax its financial constraints.

For when liquidity is tight (when the firm is close to exhausting its line of credit), the

priority for the firm is to survive. From a liquidity and risk management perspective, this

means that the firm cuts back expenditure (e.g., compensation and investment), generates

new sources of liquidity by selling insurance on persistent productivity shocks and taking

hedging positions to ensure that the volatility of its liquid savings s is minimal. In contrast,

when liquidity is plentiful the firm’s financial policy switches to maximizing the present value

of its liquid and illiquid capital, (s + qFB)K, provided that investors can credibly commit

to accumulating future promises. When neither the entrepreneur nor investors can commit,

i.e., for the two-sided limited commitment problem, we show that it is optimal for the firm to

distort its investment, and over-invest in physical capital when it cannot credibly accumulate

more liquid savings.

Although our framework is already quite rich, we have imposed a number of strong

assumptions, which are worth relaxing in future work. For example, one interesting direction
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is to allow for equilibrium separation between the entrepreneur and investors. This could

arise, when after an adverse productivity shock the entrepreneur no longer offers the best

use of the capital stock. Investors may then want to redeploy their capital to other more

efficient uses. By allowing for equilibrium separation our model could be applied to study

questions such as the expected and optimal life-span of entrepreneurial firms, the optimal

turnover of managers, or the optimal investment in firm-specific or general human capital.
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Appendix

A The Entrepreneur’s Optimization Problem

We conjecture that the value function J(K,S) takes the following form:

J(K,S) =
(bM(K,S))1−γ

1− γ
=

(bm(s)K)1−γ

1− γ
, (A.1)

where b is given in (17). We then have:

JS = b1−γ(m(s)K)−γm′(s), (A.2)

JK = b1−γ(m(s)K)−γ(m(s)− sm′(s)), (A.3)

JSK = b1−γ(m(s)K)−1−γ (−sm(s)m′′(s)− γm′(s)(m(s)− sm′(s))) , (A.4)

JSS = b1−γ(m(s)K)−1−γ (m(s)m′′(s)− γm′(s)2
)
, (A.5)

JKK = b1−γ(m(s)K)−1−γ (s2m(s)m′′(s)− γ(m(s)− sm′(s))2
)
. (A.6)

Substituting these terms into the HJB equation (11) and simplifying, we obtain:

0 = max
c,i,φ1,φ2

ζm(s)

(
c

bm(s)

)1−γ
− 1

1− γ
+ (i− δK)(m(s)− sm′(s))

+(rs+ φ2(µ2 − r) + A− i− g(i)− c)m′(s) +
σ2
K

2

(
s2m′′(s)− γ(m(s)− sm′(s))2

m(s)

)
+
(
ε2Kφ1 + ρσKσ2φ2

)(
−sm′′(s)− γm′(s)(m(s)− sm′(s))

m(s)

)
+

(εKφ1)2 + (σ2φ2)2

2

(
m′′(s)− γm′(s)2

m(s)

)
. (A.7)

The first order conditions for consumption and investment in (12) and (13) then become:

ζU ′(c) = b1−γm(s)m′(s)−γ, (A.8)

1 + g′(i) =
m(s)

m′(s)
− s . (A.9)

From the first order conditions (14) and (15), we obtain (39) and (40).

Finally, substituting these policy functions for c(s), i(s), φ1(s)and φ2(s) into (A.7), we
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obtain the ODE given in (49) for m(s):

0 =
m(s)

1− γ

[
γχm′(s)

γ−1
γ − ζ

]
+ [rs+ A− i(s)− g(i(s))]m′(s) + (i(s)− δ)(m(s)− sm′(s))

−
(
γσ2

K

2
− ρησK

)
m(s)2m′′(s)

m(s)m′′(s)− γm′(s)2
+

η2m′(s)2m(s)

2(γm′(s)2 −m(s)m′′(s))
, (A.10)

where χ is defined by

χ ≡ b
γ−1
γ ζ

1
γ . (A.11)

A.1 First Best

Under the first-best case, we have mFB(s) = s+qFB. Substituting for mFB(s) into the ODE
(A.10) we obtain:

0 =
s+ qFB

1− γ
[γχ− ζ] +

[
rs+ A− iFB − g(iFB)

]
+ (iFB − δ)qFB +

η2(s+ qFB)

2γ

=

(
γχ− ζ
1− γ

+
η2

2γ
+ r

)
(s+ qFB) +

[
A− iFB − g(iFB)− (r + δ − iFB)qFB

]
.(A.12)

As (A.12) must hold for all mFB(s) = s+ qFB, we must have

χ = r +
η2

2γ
+ γ−1

(
ζ − r − η2

2γ

)
, (A.13)

as given by (26), and

0 = A− iFB − g(iFB)− (r + δ − iFB)qFB, (A.14)

so that (19) holds. Finally, using (A.11), we obtain the expression (17) for the coefficient b.

Next, substituting m(s) = mFB(s) = s + qFB into (A.8) and (A.9) gives the first-best
consumption rule (25) and investment policy (21). Moreover, substituting m(s) = mFB(s) =
s + qFB into ((39) and (40) respectively, we obtain the first-best idiosyncratic risk hedge
φFB1 (s) given in (27) and the market portfolio allocation φFB2 (s) given in (28).

Turning to the dynamics of {MFB
t ; t ≥ 0}, we apply the Ito’s formula to MFB

t = St +
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QFB
t = St + qFBKt and obtain the following dynamics:

dMFB
t = d(St +QFB

t ) = (rSt + Yt − Ct)dt+ ΦFB
1,t εKdZ1,t + ΦFB

2,t [(µ2 − r)dt+ σ2dZ2,t]

+QFB
t

[(
iFB − δK

)
dt+ (εKdZ1,t + ρσKdZ2,t)

]
= MFB

t

[(
r − χ+

η2

γ

)
dt+

η

γ
dZ2,t

]
, (A.15)

where we use the following first-best policy rules:

ΦFB
1,t (s) = −QFB

t and ΦFB
2,t (s) = −βFBQFB

t +
η

γσ2

(
St +QFB

t

)
.

A.2 Limited Commitment

First, recall that for the limited-commitment case, the HJB equation is the same as that for
the first-best case. We thus only focus on boundary conditions here. At the left boundary
S(K), the entrepreneur’s credit constraint binds, which implies:

J(K,S) = J(αK, 0) . (A.16)

By substituting the value function (35) into (A.16), we obtain M(K,S) = M(αK, 0), which
implies (45). The boundary conditions given in (46) are necessary to ensure that the en-
trepreneur will stay with the firm, which implies that

φ1(s) = s, φ2(s) = sβFB . (A.17)

And then comparing the above equations with (39) and (40), it is straightforward to show
that (46) is equivalent to lims→sm

′′(s) = −∞ as given in (47). Finally, we show that as
s→∞, we have lims→∞m(s) = mFB(s) = s+ qFB.

For brevity, we omit standard arguments as in Krylov (1980) and Karatzas and Shreve
(1991) to establishing existence and uniqueness of the solution for the optimization problem.

B Optimal Contract

B.1 Solution of the Contracting Problem

In this subsection, we provide the derivations for Propositions 5 and 6.
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HJB Equation. First, we recall that the investors’ optimization problem is

F (Kt, Vt) = max
C, I, x1, x2

Et
[∫ ∞

t

Mv

Mt

(Yv − Cv)dv
]
, (B.1)

subject to the entrepreneurs’ inalienability-of-human-capital constraints (51) for all time t,
and the entrepreneur’s initial participation constraint (54).

Using Ito’s formula, we have

d(MtF (Kt, Vt)) = MtdF (Kt, Vt) + F (Kt, Vt)dMt+ < dMt, dF (Kt, Vt) > , (B.2)

where

dF (Kt, Vt) = FKdKt +
FKK

2
< dKt, dKt > +FV dVt

+
FV V

2
< dVt, dVt > +FV K < dVt, dKt >

=

[
(I − δKK)FK +

σ2
KK

2FKK
2

+ ζ (V − U(C))FV

]
dt

+

[
(x2

1 + x2
2)V 2FV V
2

+ (x1εK + x2ρσK)KV FV K

]
dt

+V FV (x1dZ1,t + x2dZ2,t) + σKKFK

(√
1− ρ2dZ1,t + ρdZ2,t

)
. (B.3)

Using the SDF M given in (9) and the following martingale representation,

Et[d(MtF (Kt, Vt))] + Mt(Yt − Ct)dt = 0 , (B.4)

we obtain (57), which is the HJB equation for the optimal contracting problem.

First-Order Conditions. Differentiating the right-hand side of (57) with respect to C,
I, x1, and x2 we then obtain the following FOCs:

ζU ′(C∗) = − 1

FV (K,V )
, (B.5)

FK(K,V ) = 1 +GI(I
∗, K), (B.6)

x∗1 = − εKKFV K
V FV V (K,V )

, (B.7)

x∗2 = − ρσKKFV K
V FV V (K,V )

+
ηFV

V FV V (K,V )
. (B.8)
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FOC (B.5) equates the entrepreneur’s marginal utility of consumption ζU ′(C∗) with
−1/FV , which is positive as FV < 0. Multiplying (B.5) through by −FV , we observe that
at the optimum the agent’s normalized marginal utility of consumption, −FV ζU ′(C), has
to equal unity, the risk-neutral investor’s marginal cost of providing a unit of consumption.
Note that (B.5) is analogous to the inverse Euler equation in Rogerson (1985).

FOC (B.6) characterizes optimal investment, which is obtained when the marginal benefit
of investing, FK(K,V ), is equal to the marginal cost of investing, 1 +GI(I,K). FOC (B.7)
and (B.8) characterize the optimal exposures of the promised utility V to the idiosyncratic
shock Z1 and the systematic shock Z2, respectively. As we show later, x1 and x2 are closely
tied to the firm’s optimal risk management policies φ1(s) and φ2(s), respectively.

Dynamics of the Entrepreneur’s Promised Scaled Wealth w. Using Ito’s lemma,
we have the following dynamics for W :

dWt =
∂W

∂V
dVt +

1

2

∂2W

∂V 2
< dVt, dVt >=

dVt
VW
− VWW

2V 3
W

< dVt, dVt > , (B.9)

where < dVt, dVt > denotes the quadratic variation of V , (B.9) uses ∂W/∂V = 1/VW , and

∂2W

∂V 2
=
∂V −1

W

∂V
=
∂V −1

W

∂W

∂W

∂V
= −VWW

V 2
W

1

VW
= −VWW

V 3
W

. (B.10)

Substituting the dynamics of V given by (56) into (B.9) yields

dWt =
1

VW
[ζ(V − U(Ct))dt+ x1V dZ1,t + x2VtdZ2,t]−

(x2
1 + x2

2)V 2VWW

2V 3
W

dt . (B.11)

Using the dynamics for W and K, we can write the dynamic evolution of the certainty
equivalent wealth w as follows:

dwt = d

(
Wt

Kt

)
= µw(w)dt+ σw1 (w)dZ1,t + σw2 (w)dZ2,t , (B.12)

where the drift and volatility processes µw( · ) and σw1 ( · ) and σw2 ( · ) for w are given by

µw(w) =
ζ

1− γ

(
w +

c(w)

ζp′(w)

)
− w(i(w)− δK) +

γw

2

x2
1 + x2

2

(1− γ)2
− (εKσ

w
1 (w) + ρσKσ

2
2(w)) ,

(B.13)
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and

σw1 (w) = −w
(
εK −

x1(w)

1− γ

)
, σw2 (w) = −w

(
ρσK −

x2(w)

1− γ

)
. (B.14)

Derivation for Propositions 5 and 6. Applying Ito’s formula to (58) and transforming
(57) for F (K,V ) into an HJB equation for P (K,W ), we obtain the following:

rP (K,W ) = max
C,I,x1,x2

{
Y − C +

ζ(U(bW )− U(C))− x2ηU(bW )

bU ′(bW )
PW

+(I − δKK − ρησKK)PK +
σ2
KK

2

2
PKK

+
(x2

1 + x2
2)(U(bW ))2

2

PWW bU
′(bW )− PW b2U ′′(bW )

(bU ′(bW ))3

+(x1εK + x2ρσK)
KU(bW )

bU ′(bW )
PWK

}
. (B.15)

And then using the FOCs for I, C, x1 and x2 respectively, we obtain

1 +GI(I,K) = PK(K,W ) , (B.16)

U ′(bW ) = −ζ
b
PW (K,W )U ′(C) , (B.17)

x1 = − εKKPWKbU
′(bW )

U(bW )[PWW − PW bU ′′(bW )/U ′(bW )]
, (B.18)

x2 = − ρσKKPWKbU
′(bW )

U(bW )[PWW − PW bU ′′(bW )/U ′(bW )]

+
ηPW bU

′(bW )

U(bW )[PWW − PW bU ′′(bW )/U ′(bW )]
. (B.19)

Substituting P (K,W ) = p(w)K into (B.16)-(B.19), we obtain the optimal investment, con-
sumption, and risk management policies given by (63)-(66), respectively. And then sub-
stituting P (K,W ) = p(w)K and these optimal policies into the PDE (B.15), we obtain

the ODE (59). The constraint Vt ≥ V̂ (Kt) implies Wt ≥ wKt where w is denoted by

w = U−1(V̂ (Kt))/(bKt). To ensure Vt+dt ≥ V̂ (Kt+dt) with probability one, the drift of

Vt/V̂ (Kt) should be weakly positive (negative) if Vt > 0 (Vt < 0) and the volatility of

Vt/V̂ (Kt) should be zero at the boundary Vt = V̂ (Kt). Therefore, the following conditions
ensure that the entrepreneur will not walk away at the endogenous left boundary w:

lim
w→ w

σw1 (w) = 0 , lim
w→ w

σw2 (w) = 0 , and lim
w→ w

µw(w) ≥ 0 . (B.20)
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Using (B.14), (65), and (66), we show that the conditions given in (B.20) are equivalent
to the boundary condition limw→ w p

′′(w) = −∞. We determine w by using (52) and (58),
which together imply

P (αK,W (αK)) = 0 . (B.21)

We thus have p(w) = 0, where w = W (αK)/(αK) and W (αK) = U−1(V (αK))/b. In addi-

tion, (53) implies w = αw, where w = W (K)/K and W (K) = U−1(V̂ (K))/b. Furthermore,
substituting w = αw into p(w) = 0, we obtain p(w/α) = 0 as given in (61). Finally, the
boundary condition (62) ensures that p(w) attains the first-best as w →∞.

The Two-Sided Limited-Commitment Case. When investors face the limited-liability
constraint, the contract requires the volatility at the endogenous upper boundary w to be
zero and additionally the drift to be non-positive in order for the investors not to walk away
from the contractual agreement:

lim
w→w

σw1 (w) = 0 , lim
w→w

σw2 (w) = 0 , and lim
w→w

µw(w) ≤ 0 . (B.22)

The arguments for (B.22) are essentially the same as those we have sketched out for the
lower boundary w = αw. In addition, the boundary condition (B.22) implies the equivalent
boundary condition:

lim
w→w

p′′(w) = −∞ . (B.23)

Again, for brevity, we omit standard arguments as in Krylov (1980) and Karatzas and
Shreve (1991) to establishing existence and uniqueness of the solution for the entrepreneur’s
optimization problem.

B.2 Equivalence between the Contracting and Dual Problems

Having characterized the optimal contract in terms of the entrepreneur’s promised certainty-
equivalent wealth W , we show next how to implement the optimal contract by flipping
the optimal contacting problem on its head and considering a dynamic entrepreneurial fi-
nance problem, where the entrepreneur owns the firm’s productive, illiquid capital stock and
chooses consumption and corporate investment by optimally managing liquidity and risk
subject only to satisfying the endogenous liquidity constraint. A key observation is that the
entrepreneur’s inalienability-of-human-capital constraints naturally translate to endogenous
liquidity constraints in the entrepreneur’s problem.

This dual optimization problem for entrepreneur is equivalent to the optimal contract
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problem for the investor in (50) if and only if the borrowing limits, S(K), are such that:

S(K) = −P (K,W ) , (B.24)

where P (K,W ) is the investors’ value when the entrepreneur’s inalienability-of-human-
capital constraint binds, that is, when W = W . Accordingly, we characterize the imple-
mentation solution for the dual problem by first solving the investors’ problem in (57), and
then imposing the constraint in (B.24).

To summarize, the primal optimal contracting problem gives rise to the investor’s value
function F (K,V ), with the promised utility to the entrepreneur V as the key state variable.
By expressing V in units of consumption rather than utils, the investor’s value F (K,V )
can be expressed in terms of the entrepreneur’s promised certainty-equivalent wealth W :
P (K,W ). The dual problem for the entrepreneur gives rise to the entrepreneur’s value
function J(K,S), with S = −P (K,W ) as the key state variable. Or, again expressing
the entrepreneur’s value in units of consumption, the entrepreneur’s value function is her
certainty equivalent wealth M(K,S) and the relevant state variable is her savings S = −P .

Next, we provide a proof for the equivalence between the contracting and dual problems,
as Table 1 in Introduction summarizes. First, we show that the following relations between
s and w hold:

s = −p(w) and m(s) = w . (B.25)

Then, the standard chain rule implies:

m′(s) = − 1

p′(w)
and m′′(s) = − p

′′(w)

p′(w)3
. (B.26)

Substituting (B.25) and (B.26) into the ODE (49) for m(s), we obtain the ODE (59) for
p(w). Similarly, substituting (B.25) and (B.26) into (46) for m(s), we obtain (62), a boundary
condition for p(w). Substituting (B.25) into (48) for m(s), we obtain lims→∞ p(w) = qFB−w.
And then substituting (B.25) into (45), we obtain (61). Finally, by using (B.25) and (B.26),
we show that the optimal consumption and investment policies for the primal and dual
problems are indeed equivalent.

C Persistent Productivity Shocks

First, by using the dynamics of St given by (75) and the dynamic programming method, we
obtain the HJB equation for the entrepreneur’s value function JL(K,S) in State L as given
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in (76) and similarly the following HJB equation for JH(K,S) in State H:

ζJH(K,S) = max
C,I,Φ1,Φ2,ΠH

ζU(C) + (I − δKK)JHK +
σ2
KK

2

2
JHKK

+
(
rS + Φ2(µ2 − r) + AHK − I −G(I,K)− C − λHΠH

)
JHS

+
(
ε2KΦ1 + ρσKσ2Φ2

)
KJHKS +

(εKΦ1)2 + (σ2Φ2)2

2
JHSS

+λH [JL(K,S + ΠH)− JH(K,S)] . (C.1)

We then obtain the following main results:

Proposition 7 In the region s > sL, mL(s) satisfies the following ODE:

0 = max
iL, πL

mL(s)

1− γ

[
γχmL′(s)

γ−1
γ − ζ

]
+
[
rs+ AL − iL − g(iL)− λLπL(s)

]
mL′(s)

−
(
γσ2

K

2
− ρησK

)
mL(s)2mL′′(s)

mL(s)mL′′(s)− γmL′(s)2
+

η2mL′(s)2mL(s)

2(γmL′(s)2 −mL(s)mL′′(s))

+(iL − δ)(mL(s)− smL′(s)) +
λLmL(s)

1− γ

((
mH(s+ πL)

mL(s)

)1−γ

− 1

)
, (C.2)

subject to the following boundary conditions:

lim
s→∞

mL(s) = qFBL + s , (C.3)

mL(sL) = αmL(0) , (C.4)

lim
s→sL

mL′′(s) = −∞ . (C.5)

where qFBL is provided in Proposition 8. Finally, the (scaled) insurance demand πL(s) solves
the following implicit equation:

mH′(s+ πL) = mL′(s)

(
mL(s)

mH(s+ πL)

)−γ
, (C.6)

provided that the solution πL(s) to the above FOC also satisfies πL(s) ≥ sH − s . Otherwise,
the entrepreneur sets πL(s) as follows:

πL = sH − s . (C.7)

We have another set of essentially the same equations and boundary conditions for mH(s)
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and πH(s) in state H.

The following proposition summarizes the solutions for the first-best case.

Proposition 8 Under the first-best, the firm’s value QFB
n (K) in state n = {H,L} is pro-

portional to K: QFB
n (K) = qFBn K, where qFBH and qFBL jointly solve:

(
r + δ − iFBL

)
qFBL = AL − iFBL − g(iFBL ) + λL

(
qFBH − qFBL

)
, (C.8)(

r + δ − iFBH
)
qFBH = AH − iFBH − g(iFBH ) + λH

(
qFBL − qFBH

)
, (C.9)

and where iFBL and iFBH satisfy:

qFBL = 1 + g′(iFBL ) and qFBH = 1 + g′(iFBH ) . (C.10)

The insurance demands in state L and H are respectively given by:

πL = qFBH − qFBL and πH = qFBL − qFBH . (C.11)
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