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Abstract

This paper analyzes all-pay auctions where the bidders have affiliated values for
the object for sale and where the signals take binary values. Since signals are corre-
lated, high signals indicate a high degree of competition in the auction and since even
losing bidders must pay their bid, non-monotonic equilibria arise.

We show that whenever the symmetric equilibrium is non-monotonic the contes-
tants earn no rents. We also show that all-pay auctions result in low expected rents
to the bidders, but they also induce inefficient allocations in models with affiliated
private values. With two bidders, the effect on rent extraction dominates, and all-
pay auction outperforms standard auctions in terms of expected revenue. With many
bidders, the this revenue ranking is reversed for some parameter values and the inef-
ficient allocations persist even in large auctions.

JEL CLASSIFICATION: D44, D82
KEYWORDS: All-pay auctions, common values, affiliated signals

1. Introduction

In an all-pay auction, a number of bidders compete for a fixed prize by submitting simul-
taneous bids under the rule that the highest bidder wins and all the bidders must pay
their bid regardless of whether they win or not. Even though all-pay auctions are sel-
dom conducted formally, the format is interesting because of its theoretical connection to
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winner-takes-all contests where bidders take the role of contestants expending resources
to win a fixed prize.1

Very little is known about the all-pay auction and contest models when the bidders’
valuations are correlated even though such correlation is often quite natural. For exam-
ple, when lobbying for a policy with uncertain economic effects, when undertaking R&D
to obtain a patent, or when competing for a rent-generating position, it is natural that
players’ estimated values from winning are correlated.2 The key implication of correla-
tion is that a higher valuation implies high valuations for other contestants and hence a
higher perceived probability of losing at a fixed bid if bidders with high signals submit
higher bids. Hence a high signal carries two different messages: the value of the object
and the level of competition are both likely to be high. With all-pay rules, the importance
of competition is highlighted since also losing bids (or sunk efforts in the contest model)
must be paid. When added competition is more important than the good news on the
value of the object, the monotonicity of bidding strategies (i.e. the requirement that bid-
ders with higher valuations always win over bidders with lower valuations) may fail. We
show that the failure of monotonicity results in qualitative changes in the outcomes.

In this paper, we consider the simplest possible informational model with affiliated
signals and interdependent valuations. We tackle the potential non-monotonicity of bid-
ding strategies by assuming a binary signal structure. Each participant has a binary signal
on the value of the object, and her payoff depends on the entire vector of signals. Since
all the bids must be paid, the all-pay auction cannot have symmetric equilibria with a
positive probability of ties for highest bids, or in other words, symmetric equilibria must
be in atomless mixed strategies. Our framework is general enough to accommodate the
mineral rights model, the model with affiliated private values, and cases in between. We
show that the correlation in the signals calls for a re-evaluation of the previous results on
rent dissipation and the efficiency of symmetric equilibria.

Our two main findings are the following. First, the unique symmetric equilibrium of
the model features full rent dissipation whenever the equilibrium is non-monotonic. In
other words, optimistic contestants are held to the same expected payoff as the pessimistic
ones. Second, unless we are in the case of pure common values (where the identity of the
winner does not matter for efficiency), all-pay auctions feature allocative inefficiencies.
We show that these inefficiencies remain significant even when the number of players

1The early literature of all-pay auctions has generally focused on environment where bidders have com-
plete information about each bidder’s value of the object and cost of bidding. Examples of such papers
include Hillman and Riley (1989), Baye et al. (1993) and Che and Gale (1998). Siegel (2009) provides a
definitive treatment of this model by allowing heterogeneity on the bidder’s characteristics. The recent sur-
vey paper by Kaplan and Zamir (2015) gives a comprehensive picture of recent developments in the all-pay
auction and contest theory.

2The same effects arise if the private effort costs of the contestants are correlated.
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increases.
To appreciate the role of correlation, consider two alternative information structures:

complete information and independent types. With common values and complete infor-
mation, the payoffs from winning are the same for all bidders, and as a result, all bidders
have the same symmetric equilibrium strategies. With private values and complete in-
formation, only the high type bidders submit positive bids as long as there are at least
two high type bidders. With independent types, our results in this paper imply that the
symmetric equilibria are monotone. In all of these cases, bidders of both types agree on
the distribution of competing bids. With correlation, this is no longer the case. Bidders
with high signals perceive the correlation differently from the bidders with low signals.
This asymmetric information on the degree of competition gives rise to our new insights.

These results have implications for less structured contest settings as well. When-
ever a single leading candidate is picked in a field of contestants and the selection stage
is preceded by a sunk investment (or prior effort) by the contestants, the issues that we
highlight in this paper arise. While the rents are (at least approximately) dissipated in
contests with large numbers of potential participants as expected, it may come as a sur-
prise that the allocation may be inefficient. We show that the associated efficiency losses
may be quite large in comparison to the total surplus generated.3

To get a better idea why full rent dissipation might hold in equilibrium, suppose for
starters that bidding is in monotone strategies and therefore bidders with high signals
always win against bidders with a low signal. By affiliation, bidders with high signals
believe that they are more likely to face a competitor that has seen a high signal. Hence
there are two counteracting effects of having a high signal: a valuation effect (a bidder with
a high signal is more optimistic about the value of the object) and a competition effect (a
bidder with a high signal expects to face a more aggressive competition than a low-signal
bidder).

Up to this point in the discussion, we have not considered the auction format at all
and hence the reasoning above applies to standard auction formats as well. To under-
stand why monotonicity fails under all-pay rules but not under standard rules, consider
a standard first-price auction. As explained in Wang (1991), the low type bidders bid the
value of the object conditional on all bidders having low signals. In this case, a bidder
makes a payment only if she wins the auction. As a result, high-type bidders can safely
outbid the low-type bidders without a fear of losses and this leads to an equilibrium
where bidders with high valuations bid above bidders with low valuations. With all-pay

3It is also worth mentioning that the same method of analysis allows us to compute the equilibria for
contests where success requires an effort above a given threshold (or equivalently in auctions with a min-
imal bid). With this modification, the symmetric equilibria of the model display a random number of
participants in the sense of supplying a level of effort that exceeds the minimum required.
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rules, any bid winning all low signal bids but losing to high signal bids results in a loss
if another high valuation bidder exists. The losses are particularly likely for a high signal
bidder if the signals are strongly correlated. In this case, it is better to avoid those losses
by submitting a bid of zero and as a result, zero is in the support of the bid distribution of
the high signal bidders. Since zero is also in the support of the low signal bidders, this im-
plies that equilibrium rents are fully dissipated. Such an equilibrium is non-monotonic in
the sense that a low valuation bidder wins against a high valuation bidder with a positive
probability.

Since different auction formats result in different allocations in symmetric equilibrium,
the revenue across auction formats cannot be compared based on linkage principle. By
constructing the symmetric equilibria in the different cases, we can directly compare the
total surplus generated and its division between seller’s and buyers’ rents by investi-
gating carefully the supports of the equilibrium bid functions. We show that whenever
a monotone strategy equilibrium exists in the all-pay auction, the expected revenue in
the all-pay auction exceeds the revenue in standard auction formats as in Krishna and
Morgan (1997). When equilibria are non-monotonic, the revenue comparison is more
subtle. All-pay auctions induce two countervailing effects on the revenue, which are ab-
sent from standard auctions. First, rents to bidders are diminished and often completely
eliminated, which increases revenue. Second, inefficient allocation may reduce the total
surplus, which results in lower revenue.

We show that the information rent received by the high valuation bidders is always
smaller in the all-pay auction than in standard auction formats (first-price and second-
price auctions). In the case of pure common values the total surplus is independent of
the allocation decision (i.e. whether a high signal bidder or a low signal bidder gets
the object), and hence in that case the expected revenue in the all-pay auction is always
weakly higher than in standard auctions.

With affiliated private values, the revenue comparison is more interesting. In contrast
to the common values model, non-monotonic equilibria introduce allocational inefficien-
cies. In order to obtain a revenue comparison between the different auction formats, we
must therefore compare the rent reduction with the inefficiency. This equilibrium trade-
off between rent extraction and efficiency has not been shown in the prior literature.

We show that with two bidders, rent reduction dominates inefficiency and all-pay
auctions result in higher expected revenues than standard auctions. With more bidders,
this result may be reversed. Not surprisingly, rent reduction is not important as the num-
ber of players increase since the increased competition drives down the bidders’ rents
regardless of the auction format. Since even large all-pay auctions may have inefficient
allocations, the revenue comparison tilts to the favor of the standard auctions. In order
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to make sense of this trade-off in the clearest manner, we analyze a two-state special case
of the model and show that even in the limit where the number of bidders increases to-
wards infinity, the surplus loss due to inefficient allocation may remain significant. One
may find it surprising that a bidder with a low private valuation ends up winning the
auction with a non-negligible probability even though it is commonly understood that
there is a large number of high valuation bidders in both states of the world.

Previous work on all-pay auctions has concentrated on models with monotone equi-
libria. An early contribution by Krishna and Morgan (1997) derives sufficient conditions
for the existence of a symmetric pure strategy equilibrium in monotone strategies. Un-
fortunately, the conditions are very strong and furthermore not easily verified in terms of
the primitives of the model. More recently Siegel (2014) analyzes a model with a finite
set of possible signals on the value of the prize, and derives conditions for the existence
of a monotonic mixed strategy equilibrium. Another recent paper Rentschler and Turocy
(2016) goes beyond monotonic equilibria in an affiliated all pay auction with a general
discrete signal structure and provides an algorithm for finding symmetric non-monotonic
equilibria. In contrast to that paper, we provide a full characterization of the symmetric
equilibria for a subclass of models assuming binary signal structure.

Our paper is also related to auctions with entry costs. A recent paper by Murto and
Välimäki (2017) compares the expected revenue in first- and second-price common value
auctions when prior to the auction stage, the bidders make a costly entry decision. The
connection to the current non-standard auction forms comes from the observation that
the total payment by losing bidders is positive even in these standard auction formats
once we account for the entry cost.

2. The Model

A single indivisible object is sold in an all-pay auction to one of N potential risk-neutral
bidders. We assume that each bidder i observes privately a binary signal (or type) ti ∈
{L, H}. We order the signals H > L with the idea that H is good news about the value of
the object for sale. The signals are assumed to be affiliated with another random variable
θ ∈ Θ = {θ0, θ1, · · · , θM−1}, which we call the state of the world and order with θm−1 <

θm. Denoting by p (θ, t) the joint probability distribution of the state and the signal vector
t = (t1, · · · , tN), we require p to be symmetric over t and log-supermodular in (θ, t). This
implies the monotone likelihood ratio property for all bidders signals and each signal and
state separately.

The prior on the state is denoted by q (θ) ∈ ∆ (Θ) . We further assume that the signals
are identically and independently distributed given θ. Due to its binary structure, the
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distribution of ti can be represented by αm := Pr (ti = H |θ = θm ) for m ∈ {0, · · · , M− 1}.
Our assumption of log-supermodular p (θ, t) translates into the requirement that αm−1 <

αm. We denote the posterior distribution on the state θ given a vector of signals t by
p (θ |t ) .

Bidder i’s value of the object is given by vi (θ, t) > 0. We assume further that the
players are symmetric and that the bidder i′s valuation depends only on θ and ti. With
this assumption, we can write each bidder’s valuation as

vi (θ, t) = v (θ, ti) .

The environment is a binary signal version of the general symmetric affiliated model
formulated in Milgrom and Weber (1982). The most important special cases of our model
are the mineral rights model, where v (θ, ti) = v (θ) , and the affiliated private values model,
where v (θ, ti) = vti . Finally, we assume that v (θ, ti) is log-supermodular and increasing
in each argument.4

In a symmetric model with binary signals, the payoff relevant information to bidder i
is contained in the statistic (ti, Yi) , where Yi is the number of other bidders j with signal
tj = H. By the symmetry of the model, we can write

Vk (n) := Eθ[v (θ, ti) |Yi = n, ti = k ],

which is increasing in k and n by the monotonicity and log-supermodularity of v. Also,
we denote by pk(n) the conditional probability on Yi = n given signal ti = k.

In the all-pay auction, all bidders submit nonnegative bids simultaneously and the
highest bidder receives the object while all bidders pay their bid. In case of multiple
highest bidders, any arbitrary tie-breaking rule can be adopted to allocate the object be-
tween them. We represent the (mixed) strategy of bidder i by Fi =

(
FL

i , FH
i
)

, where each
Fti

i is a distribution function on nonnegative real numbers. We use supp[Fti
i ] to denote

the support of Fti
i for each type. In line with the symmetry assumptions that we have

imposed, we concentrate on equilibria in symmetric strategies, i.e. Fi = F∗ for all i.
Suppose that bidder i observes ti = k and makes a nonnegative bid b, and that his

opponents employ a symmetric strategy F∗ = (FL
∗ , FH
∗ ). Suppressing the index i, the

expected equilibrium payoff u (b, k|F∗) to the bidder can be written as

u (b, k|F∗) := −b +
N−1

∑
n=0

Vk(n)pk(n)
(

FH
∗ (b−)

)n (
FL
∗ (b−)

)N−n−1
+ π (b, k|F∗) , (1)

4Our results remain valid as long as v(θ, H)− v(θ, L)h(θ) satisfies the single-crossing property in θ for
all h : Θ→ <+ decreasing in θ.
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where the second term π (b, k|F∗) denotes the expected value of the object conditional on
tying with (at least) one highest bidder, and Fk

∗(b−) indicates the limit from the left at b of
Fk
∗(·) . We show in the beginning of the next section that all symmetric equilibria are in

atomless strategies and as a result, the second term π vanishes in the equilibrium analysis
and Fk

∗(b−) = Fk
∗(b).

To interpret the payoff formula, Vk(n) represents the expected value of the object con-
ditional on winning when there are n high types among bidder i’s opponents, and the
term

[
FH
∗ (b−)

]n [FL
∗ (b−)

]N−n−1 indicates the corresponding winning probability when
bidding b and facing n opponents with high signals.

A symmetric Bayes-Nash equilibrium of the all-pay auction is a pair of distributions
F∗ = (FL

∗ , FH
∗ ) such that for each k = L, H,

if b ∈ supp[Fk
∗ ], then u (b, k|F∗) ≥ u

(
b′, k|F∗

)
for all b′ ≥ 0.

3. Existence and Uniqueness of Symmetric Equilibria

We begin our analysis by establishing some basic facts for symmetric equilibria. Our first
lemma shows that in every symmetric equilibrium, bidders employ an atomless bidding
strategy and the union of the supports is a connected interval. With atomless strategies,
the tie-breaking term π in the payoff formula (1) is redundant and equilibrium expected
payoff u(b, k|F∗) is continuous in own bid b. If a bid b is in the support of Fk

∗ , then it
maximizes u(b, k|F∗) and hence any two distinctive bids in supp[Fk

∗ ] must generate the
same expected payoff to a type-k bidder. This indifference condition serves as a key
analytic tool in what follows.

Lemma 1. In every symmetric equilibrium of the all-pay auction the following properties hold:

1. For each k, Fk
∗ is continuous, i.e., neither distribution has mass points.

2. The union of two supports, supp[FL
∗ ] ∪ supp[FH

∗ ], is a connected interval that includes
zero.

Proof. See Appendix A.1.

In games of incomplete information, monotone strategies play a prominent role in
characterizations and existence proofs of Bayes-Nash equilibria (see Athey (2001)). Since
our equilibrium is not in pure strategies, the definition of monotonicity is not obvious.
We call a symmetric equilibrium monotonic if no bidder with a high signal ever loses to
another bidder with a low signal: for every bH and bL with bH ∈ supp[FH

∗ ] and bL ∈
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supp[FL
∗ ], we have bH ≥ bL. In the light of Lemma 1, an equilibrium is monotonic only if

the bid supports of the two types are connected non-overlapping intervals.
The existing analysis of all-pay auctions has mostly concentrated on monotonic equi-

libria where the high signal is unambiguously a good news to bidders compared to the
low signal. Our main goal in this section is to provide a necessary and sufficient condition
under which a profile of monotone bidding strategies can be supported as an equilibrium.
For this purpose, we define the following function for n ∈ {0, · · · , N − 1} :

ψ(n) := VH(n)pH(n)−VL(n)pL(n).

We show that under our assumptions on the model, this function is single-crossing in n
and that the sign of the function at n = 0 is the key determinant of whether we have
monotonic equilibria or not. More precisely, we can simplify the question of existence of
monotonic equilibria in our model to a simple question of whether ψ(0) is nonnegative
or not.

Recall that we assumed v (θ, ti) to be increasing in both variables. Together with the
assumed affiliation of the signals and states, this guarantees that Vk(n) is increasing in
each variable and thus VH(n) ≥ VL(n) for every n. Affiliation (or the monotone like-
lihood ratio property) also guarantees that pH(N − 1) > pL(N − 1), and as a result, ψ

takes on a positive value at n = N − 1 at least. If we have only two bidders, then ψ

is single-crossing automatically. For an arbitrary number of bidders, because the likeli-
hood ratio pH(n)/pL(n) increases with n, the function ψ would be single-crossing unless
VH(n)/VL(n) decreases too rapidly over n.5 The next proposition shows that whenever
v (θ, ti) is log-supermodular, the ratio VH(n)/VL(n) is increasing in n and thus ψ is single-
crossing.

Lemma 2. If the valuation function v (θ, ti) is log-supermodular, then ψ(n) is single-crossing.

Proof. See Appendix A.1.

With this preliminary result, we are ready to state our main characterization result.

Proposition 1. The all-pay auction has a unique symmetric equilibrium, which is monotonic if
and only if ψ(0) ≥ 0. Specifically,

• If ψ(0) ≥ 0, then supp[FL
∗ ] = [0, VL(0)pL(0)] and supp[FH

∗ ] = [VL(0)pL(0), BH] for
some BH > VL(0)pL(0).

5To see one example where ψ does not satisfy the single-crossing property, consider Vk(n) = α1{k=H} +

(1− α)n + ε, where ε > 0 is a sufficiently small constant and α ≥ 1
2 and 1{k=H} is the indicator function

of the event that ti = k. Then the ratio VH(n)/VL(n) drops drastically when n increases from 0 to 1. As
a result, if pH(0)/pL(0) > ε/(α + ε) but pH(1)/pL(1) < (1− α + ε)/(1 + ε), then we have ψ(0) > 0 but
ψ(1) < 0.
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• If ψ(0) < 0, then supp[FL
∗ ] = [0, BL] and supp[FH

∗ ] = [0, BH] for some 0 < BL < BH.

The low-type bidders earn a zero expected rent and the high-type bidders earn a rent of
max (0; ψ (0)).

Proof. See Appendix A.2.

Figure 1 illustrates the different types of equilibria for the case of two bidders. The left
panel displays a monotonic equilibrium that is qualitatively similar to an all-pay auction
with independent private values. In a monotonic equilibrium, each bidder competes
against bidders of her own type within her support of bids and a bid of zero is in the
support of the low types. As a result, the low types make no rent, but the high types may
earn a positive rent. Since the cost of increasing a bid by db is constant within the support,
the benefit (i.e. the increased probability of winning) must also be constant. Hence the
symmetric bid distributions must be uniform on the support of each type of bidder.

The right panel displays a non-monotonic equilibrium whee the density of the high
type equilibrium bid distribution must be constant on the part of the support that does
not overlap with the tow type bid support by the same logic as for monotonic equilibria.
In the interior of the overlapping part of the supports, both types must be indifferent
between increasing their bid by db and remaining at the original bid. Since winning
has a different value for the two bidders, the constant densities for the equilibrium bid
distributions in this region solve the following pair of equations that equalize the gains
and losses from a higher bid for the two types:

pH(0) f L
∗ dbVH(0) + pH(1) f H

∗ VH(1)db = db,

pL(0) f L
∗ dbVL(0) + pL(1) f H

∗ VL(1)db = db.

Monotonic equilibria are possible only if the high type bidders make a non-negative
profit by bidding at the top of the support of the low type bidders. By Proposition 1, this
highest bid is VL(0)pL(0). By making this bid, a high type bidder wins with probability
pH(0) and receives a payoff VH(0). Therefore a monotonic equilibrium exists if and only
if

VH (0)
VL (0)

≥ pL (0)
pH (0)

. (2)

The right hand side increases as the correlation in the signals increases whereas the left
hand side increases as the ratio of the payoffs of the two types increases. With indepen-
dent signals, we see immediately that the right hand side is equal to unity and hence
equilibrium is monotonic. If the payoff difference between the types is small so that the
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1

BH0 VL(0)pL(0)

FL
∗ (b)

FH
∗ (b)

(a) Monotonic Equilibrium

1

BH0 BL

FL
∗ (b)

FH
∗ (b)

(b) Non-monotonic Equilibrium

Figure 1: Symmetric Equilibrium

left-hand side is close to one, only a slight degree of positive correlation is needed to kill
the monotone equilibria.

With multiple bidders, the qualitative picture remains the same. The individual bid
distributions are no longer uniform over the different components since the relevant
endogenous variable for determining the expected gains is the highest order statistic
amongst competing bidders. If the equilibrium remains monotonic as N increases, which
is the case e.g. with independent signals, we see from the first part of Proposition 1 that
the bidding support of the low-type bidders shrinks as the number of bidders is increased
(since pL (0) goes to zero), and so the game is effectively amongst the high-type bidders.
However it turns out that this is not the case if equilibrium remains non-monotonic for
large N. We return to the exact determination of the bid distributions with multiple bid-
ders in Section 5.

Since the equilibrium bidding strategies are atomless and bidding zero gives a payoff
of zero, we see that high type bidders earn a strictly positive rent only if the equilibrium
is monotonic. With non-monotonic equilibria, all bidders’ rents are fully dissipated. This
is in sharp contrast with the standard result in allocation problems under asymmetric
information that due to informational advantages (and privacy), the arrival of good news
leaves a positive rent to an agent.

We end this section by discussing in more detail whether we should expect to have
a monotonic or non-monotonic equilibrium as the number of players N increases. In
the mineral rights model, the effect of an individual bidder’s signal on the value of the
object diminishes as the number of bidders grows, and hence the left-hand side of (2)
converges to one as N → ∞. On the other hand, the right-hand side of (2) converges to
p(θ0|ti=L )
p(θ0|ti=H )

> 1, which is the likelihood ratio of the lowest possible state across the two

signal types. Intuitively, only the lowest state θ0 matters for the ratio pL(0)
pH(0) as N → ∞,

since the likelihood of Yi = 0 reduces to zero at a higher rate for all the other states than
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for state θ0. Because p(θ0|ti=L )
p(θ0|ti=H )

> 1 due to affiliation, we can deduce from Proposition 1
that the equilibrium must always be in non-monotone strategies for N large enough.

In the affiliated private values model, the left-hand side of (2) is constant at vH/vL > 1.
We can also show that the right-hand side is increasing in N. Intuitively, adding more
players who turn out to have a low signal is a greater surprise for a player who has a
high signal herself than for a player who has a low signal, and hence the denominator
pH (0) decreases faster than the nominator pL (0) as N is increased. The ratio pL(0)

pH(0) hence

converges monotonically from below to p(θ0|ti=L )
p(θ0|ti=H )

> 1 as N increases. Consequently, if
p(θ0|ti=L )
p(θ0|ti=H )

< vH/vL, the equilibrium is monotonic for all N, while if p(θ0|ti=L )
p(θ0|ti=H )

> vH/vL,
the equilibrium is non-monotonic at least for large enough N. The following proposition
summarizes our discussion.

Proposition 2. As the number of players N is increased, the symmetric equilibrium satisfies:

1. In the mineral rights model, there is a N < ∞ such that for all N > N, the symmetric
equilibrium of the model is non-monotonic.

2. In the affiliated private values case, if vH
vL

> p(θ0|ti=L )
p(θ0|ti=H )

, then the equilibrium is monotonic for

all N. If vH
vL

< p(θ0|ti=L )
p(θ0|ti=H )

, then there exists a N such that the equilibrium is non-monotonic

for all N > N.

Proof. See Appendix A.1.

4. Revenue and Efficiency Properties

We now turn to the revenue and efficiency properties of the equilibrium. We want to con-
trast the allocation and expected total payment in the unique equilibrium of the all-pay
auction to those in the standard auction formats, specifically the first- and second-price
auctions. To begin, we prove that the standard auction formats have a unique symmetric
equilibrium. The equilibrium is monotonic and the two cases are payoff equivalent.6

Proposition 3. Both standard auction formats, the first-price auction and the second-price auc-
tion, have a unique symmetric equilibrium, which is monotonic. In both cases, the low-type bidders
earn a zero expected rent, and the high-type bidders earn a positive rent of

pH (0) (VH(0)−VL (0)) .
6The payoff equivalence of the two standard auction formats is specific to the binary signal structure.

When we allow a richer signal space, we know from the linkage principle (Milgrom and Weber (1982)) that
the second-price auction is revenue-superior to the first-price auction.
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Proof. See Appendix A.3.

Propositions 1 and 3 characterize the unique symmetric equilibrium in all-pay auc-
tions and standard auctions, respectively. We see that in both cases the low type bidders
get no rent, as expected. Since by affiliation pL (0) > pH (0), we have

pH (0) (VH(0)−VL (0)) > pH (0)VH (0)− pL (0)VL (0)) = ψ (0) ,

which means that the high-type gets a higher rent in the standard auctions than in the all-
pay auction. We have therefore an unambiguous ranking of the auction formats according
to the bidders’ rents:

Remark 1. The expected rent of the bidders is higher in the standard auction formats than in the
all-pay auction.

Let us next turn to the comparison of the allocation across the auction formats. Since
the equilibrium in the standard auctions is monotonic, a high type, whenever present,
always wins against a low type and as a result the allocation is efficient. In contrast, in
the all-pay auction the equilibrium may be non-monotonic in the sense that the bidding
supports of the two types overlap. In such a case there is a positive probability that a
low type wins even when high type bidders are present, which leads to an inefficient
allocation.

There are two situations where the allocation is efficient in the all-pay auction. First,
when ψ(0) ≥ 0, the equilibrium is monotonic by Proposition 1. As seen in (2), this is
the case when VH(0)

VL(0)
is large in comparison to pL(0)

pH(0) , in other words, when the effect of
own signal on (estimated) value is large in comparison to the affiliation effect. Second,
when the identity of the winner does not matter for the efficiency, even a non-monotonic
equilibrium leads to efficient allocation. This is the case in the mineral-rights model.

Whenever the equilibrium allocation is efficient, the revenue comparison across the
auctions is simple. The revenue is the total surplus minus the bidders’ rents, and therefore
the revenue increases whenever bidders’ rent share decreases. Remark 1 leads directly to
the following result:

Proposition 4. If the allocation is efficient in the all-pay auction, then the revenue to the seller is
higher in the all-pay auction than in the standard auctions. This is the case if, either:

• v (θ, ti) = v (θ) (Mineral rights model), or if

• ψ (0) ≥ 0 (Monotonic equilibrium).

12



Note that the second case in the Proposition corresponds exactly to the result obtained
in Krishna and Morgan (1997), which analyzes the corresponding model under a contin-
uum signal space under a parameter restriction that rules out non-monotonic cases.

The revenue comparison is more interestding when the all-pay auction features alloca-
tional inefficiency. This is the case when v (θ, ti) depends on ti and ψ (0) < 0. We see from
Proposition 1 that whenever ψ (0) < 0, the bidders’ rents are fully dissipated. In this case,
therefore, the revenue comparison boils down to comparing the revenue loss due to: 1)
inefficient allocation in the all-pay auction, and 2) bidders’ rents in the standard auctions.

To make sense of this comparison, consider the special case where there are only two
bidders. To compute the revenue loss in the all-pay auction, note that an inefficient alloca-
tion may occur only when there is one high type bidder and one low type bidder present.
Denote by P(1) the probability of this event. The inefficient allocation occurs when the
low type outbids the high type, which takes place with some strictly positive probability
Pr(bL > bH), resulting in a reduction of the total surplus by VH(0)−VL(1). The expected
revenue loss due to the inefficiency in the all-pay auction can therefore be written as

P(1)
(
VH(0)−VL(1)

)
Pr(bL > bH).

On the other hand, it follows from Proposition 3 that the total expected information rents
in the standard auction formats amount to

P(1)
(
VH(0)−VL(0)

)
,

which is strictly larger than the revenue loss in the all-pay auction because VL(1) ≥ VL(0)
and Pr(bL > bH) < 1. For this reason, the expected revenue in the all-pay auction exceeds
the expected revenue in standard auctions also in the case when monotonicity fails. We
summarize the above discussion in the following proposition.

Proposition 5. With two bidders, the all pay auction generates a higher expected revenue than
the standard auction formats.

When there are more than two bidders the revenue comparison is less straightforward.
We will examine this in the next section in the context of a version of the model where the
number of bidders grows large. We will see that as N increases, information rents vanish
due to increased competition irrespective of the auction formal, but the inefficiency loss
of the all-pay auction survives and remains significant in some cases even when N goes
to infinity. This will reverse the revenue ranking result of Proposition 5.
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5. Many Bidders and a Binary State

In this section, we let the number of bidders N increase. In order to get the sharpest
results, we consider the case where the state of the world is binary and the number of
bidders is large, i.e. we consider the limiting behavior of the model as N → ∞. We start
with the affiliated private values model and then consider the mineral rights model with
common values. As already pointed out in Proposition 2, the failure of monotonicity is
typical for models with large numbers of players. The main insight in this section is that
with affiliated private values, this implies that the probability of misallocating the object
to a low type bidder remains considerable even in the limit where the number of both
types of bidders grows without bound, irrespective of the true state.

5.1. Affiliated Private Values

There are N bidders, two states θ ∈ {θ0, θ1}, and signals ti ∈ {L, H} are conditionally
i.i.d. given the state. Let q ∈ (0, 1) denote the prior belief on the event {θ = θ1} and
parameterize the distribution of signals by

α1 : = Pr (ti = H |θ1 ) ,

α0 : = Pr (ti = H |θ0 ) .

By Bayes’ rule, we can write the posterior beliefs on the state as

qH := Pr(θ1 |ti = H ) =
qα1

qα1 + (1− q) α0
,

qL := Pr(θ1 |ti = L ) =
q (1− α1)

q (1− α1) + (1− q) (1− α0)
.

(3)

For the analysis of the limiting behavior, it is useful to consider the objective probabil-
ities of winning given state θ at bid b, rather than those given the number of high-type
opponents. In state θ and the symmetric equilibrium F∗, the probability that an arbitrary
bidder submits a bid below b is given by

αθ FH
∗ (b) + (1− αθ) FL

∗ (b) .

Since there are N − 1 other bidders, the probability of winning at bid b given θ is then
given by

xm(b) := Pr (win by bidding b |θm ) =
[
αmFH

∗ (b) + (1− αm) FL
∗ (b)

]N−1
, m = 0, 1. (4)
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Write each bidder’s private value as vti with vH > vL. We start the analysis by assum-
ing that we are in the case of non-monotonic equilibria, so that the bid b = 0 is in the
support of the symmetric equilibrium bid distribution for both types of bidders. Then for
every bid b in the overlapping region of the two supports of the bidding distributions, we
can write the indifference condition between bidding b and zero to each type as

qHx1 (b) vH + (1− qH) x0 (b) vH = b,

qLx1 (b) vL + (1− qL) x0 (b) vL = b.

The left-hand side of the above equation makes use of equation (3) to express the expected
gain to the bidder of each type when she makes a bid of b, as a weighted average of
her private value by the winning probabilities given states. Observe from the form of
the equations that both x0(b) and x1(b) must be linear in b. This is consistent with the
standard all-pay auction logic that due to the unconditional payment rule, the marginal
increase in the winning probability by an increment of bid should be constant across the
bidding supports.

Solving for the two winning probabilities gives

x1 (b) =
b

qH − qL

(
1− qL

vH
− 1− qH

vL

)
= bγ1,

x0 (b) =
b

qH − qL

(
qH

vL
− qL

vH

)
= bγ0,

(5)

where we have denoted

γ1 =

1−qL
vH
− 1−qH

vL

qH − qL
, γ0 =

qH
vL
− qL

vH

qH − qL
.

Since vH > vL and qH ≥ qL, we have γ0 > 0 and γ1 ≤ γ0 for all parameter values. On the
other hand, γ1 is nonnegative if and only if

1− qL

1− qH
≥ vH

vL
.

Note that with the binary state structure, the left-hand side is equal to p(θ0|ti=L )
p(θ0|ti=H )

, and
therefore this condition is in line with Proposition 2.

Notice that the binary-state model enables us to derive the winning probabilities di-
rectly from the indifference conditions of the two types of bidders. This turns out to be
extremely useful, since we have an alternative way of expressing the winning probabili-
ties in terms of the bid distributions as is displayed in equation (4). Accordingly, we can
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find the equilibrium bid distributions
(

FH
∗ , FL

∗
)

by solving the following pair of equations
obtained by combining (4) and (5):[

α1FH
∗ (b) + (1− α1) FL

∗ (b)
]N−1

= bγ1,[
α0FH
∗ (b) + (1− α0) FL

∗ (b)
]N−1

= bγ0.
(6)

Using this system of equations, we analyze the limiting behavior of the symmetric equi-
librium as the number of bidders N grows. The system looks very simple at first sight,
but note that the bid functions FH

∗ (b) and FL
∗ (b) themselves depend on the number of

bidders.
If there exists a solution to (6), it must be the case that for a fixed b, both

[
FH
∗ (b)

]N−1

and
[
FL
∗ (b)

]N−1 converge to some finite values as N → ∞. We denote their limiting

values by γH and γL respectively, so that
[
FH
∗ (b)

]N−1 → γH and
[
FL
∗ (b)

]N−1 → γL.
Noting that (

αθ (γH)
1
N + (1− αθ) (γL)

1
N
)N
→ (γH)

αθ (γL)
1−αθ ,

we have[
αθ FH
∗ (b) + (1− αθ) FL

∗ (b)
]N−1

→
(

FH
∗ (b)

)αθ(N−1)
·
(

FL
∗ (b)

)(1−αθ)(N−1)
.

We can then write the indifference conditions for the two types in the limit N → ∞ as:

(
GH
∗ (b)

)α1 ·
(

GL
∗ (b)

)(1−α1)
= bγ1,(

GH
∗ (b)

)α0
·
(

GL
∗ (b)

)(1−α0)
= bγ0,

(7)

where we have denoted

GH
∗ (b) : = lim

N→∞

(
FH
∗ (b)

)N−1
,

GL
∗ (b) : = lim

N→∞

(
FL
∗ (b)

)N−1
.

Solving (7) for GH
∗ (b) and GL

∗ (b), we get

GH
∗ (b) = b (γ1)

1−α0
α1−α0 (γ0)

α1−1
α1−α0 ,

GL
∗ (b) = b (γ1)

−α0
α1−α0 (γ0)

α1
α1−α0 .

We can then compute the probability distribution Γk (b; θ) for the highest bids of each type
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k = H, L conditional on θ as:

ΓH (b; θ) = Pr (highest bid of type H below b |θ )

=
(

GH
∗ (b)

)αθ
= bαθ (γ1)

αθ(1−α0)
α1−α0 (γ0)

αθ(α1−1)
α1−α0 ,

ΓL (b; θ) = Pr (highest bid of type L below b |θ )

=
(

GL
∗ (b)

)1−αθ
= b1−αθ (γ1)

−(1−αθ)α0
α1−α0 (γ0)

(1−αθ)α1
α1−α0 .

Let BL denote the highest bid where the two supports overlap, i.e. where GL
∗
(

BL
)
= 1:

BL = (γ1)
α0

α1−α0 (γ0)
−α1

α1−α0 . (8)

It is self-evident from the last formula that the common support [0, BL] does not shrink
even though we let the number of bidders grow in the auction. Together with the fact that
the winning probabilities are linear in b, this suggests that the probability of inefficient
allocation does not vanish even with a large number of bidders.

We can verify this result by computing the probability of inefficient allocation condi-
tional on state θ:

Pr (low type wins |θ ) =
∫ BL

0

∂ΓL (b; θ)

∂b
· ΓH (b; θ) db

= BL (1− αθ) (γ1)
αθ−α0
α1−α0 (γ0)

α1−αθ
α1−α0

Substituting (8) into BL above, we can simplify the desired probability into

Pr (low type wins |θ ) = (1− αθ)

(
γ1

γ0

) αθ
α1−α0

.

The ex-ante probability of misallocation is therefore

Pr (low type wins) = q (1− α1)

(
γ1

γ0

) α1
α1−α0

+ (1− q) (1− α0)

(
γ1

γ0

) α0
α1−α0

.

This calculation shows that the probability of misallocation is bounded away from
zero in the all-pay auction with a large number of bidders. In the limit as N → ∞, there
would be a large number of high type bidders in both states. Nevertheless they do not
bid aggressively enough to win over the low-type bidders. To understand how this can
happen, recall that the high type is more likely to perceive the unknown state as high
and the number of high signal bidders is larger in the high state. As a consequence,
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the high degree of competition forces the high type bidders to bid relatively cautiously
because all bids are forfeited regardless of whether they win or not. The low types, on the
other hand, assign a lower probability to the high state by affiliation. Hence they would
anticipate less fierce competition compared to the high types, and this makes them bid
relatively aggressively leading to the possibility of misallocation.

To appreciate this finding, contrast the situation to a slightly modified version of our
model, where only the high-type bidders exist and their number depends on the state.
In that version of the model, the high-types compete only against each other, and the
allocation is always efficient. When the number of bidders is increased, all the rents
are eliminated also in that version of the model, and hence the equilibrium revenue and
total social surplus is higher than in the original model. In other words, if one could
prevent the low type bidders from participating, the total surplus and seller revenue
would increase.

It should be pointed out that in the limit as N → ∞, the standard auctions are both
efficient and result in a very low rent to the high bidders. Hence the expected payment
received by the auctioneer is smaller in the all-pay auction than in standard auction for-
mats, in contrast to the result with only two bidders (Proposition 5).

It is perhaps also worthwhile to interpret the model in terms of total effort expended
in a contest model. The affiliated private values case with a large number of potential
bidders can be taken to reflect heterogeneity in the valuation of the prize or idiosyncratic
(but correlated) differences in the cost of effort across contestants. One might guess that
a competitive model such as this will result in efficient allocations in the sense that the
contestants with a high valuation or low cost of effort will dissipate the entire rent. Our
analysis shows that the intuition concerning the rent dissipation is indeed correct: in the
limit as N → ∞, no participant earns a strictly positive rent. Importantly, however, the
correlation in the contestants’ valuations or costs often makes it impossible to achieve
efficient allocation. The inefficiency in the context of contest means that the total effort
is inefficiently low, or looking from a different perspective, the total cost of achieving a
given equilibrium effort level is inefficiently high.

We end this subsection with some numerical comparative statics. The results demon-
strate that the magnitude of the surplus loss due to misallocation can be substantial.
Adopting the auction interpretation of the model, the measure of efficiency is the total
surplus generated, which we denote by Π:

Π = Pr (high type wins) · vH + Pr ( low type wins) · vL.

We normalize vH = 1 so that the total surplus under efficient allocation in a large auction
is Π = 1. Letting α := α1 = 1− α0 ≥ 0.5, Figure 2 plots the total surplus as a function
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Figure 2: Total Surplus Π in a large all-pay auction as a function of α and vL. The other parameters are
q = 0.5 and vH = 1.

of two key parameters, α and vL (the only remaining parameter is q, the prior on state
θ = θ1, which we fix here as q = 0.5).

We see that for low values of vL and/or α, the allocation is efficient as Π = 1. This is
the region in the parameter space where equilibrium is monotonic, i.e.

1− qL

1− qH
<

vH

vL
.

Increasing α and/or vL the non-monotonic equilibria emerge as indicated by surplus re-
ducing below 1. The higher the correlation in the signals, the more pronounced the effect
on misallocation becomes, as seen by Π decreasing monotonically in α. The effect of vL

is more subtle. After passing the threshold of non-monotonic equilibrium, an increase
of vL reduces surplus sharply. But as vL further increases towards vH = 1, the effect of
misallocation on total surplus weakens despite its increasing probability with vL, and as
a result the total surplus is U-shaped as a function of vL. To understand better the driv-
ing force behind this observation, note that when vL is sufficiently low, the low valuation
bidders have little incentive to win the auction. This results in a monotonic equilibrium.
As vL is increased, however, the auction becomes more attractive to low type bidders
and they start bidding more aggressively. When the competition effect starts dominating
the valuation effect and the equilibrium becomes non-monotonic, the equilibria become
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Figure 3: Total Surplus Π in a large all-pay auction as a function of α and q. The other parameters are
vL = 0.5 and vH = 1.

inefficient. It is quite striking how steeply the total surplus reduces, once vL crosses the
threshold of monotonicity.

It is also interesting to note how the prior q = Pr(θ = θ1) affects the total surplus.
Figure 3 plots Π as a function of q and α. It may come as a surprise that increasing
q reduces the efficiency in some parts of the parameter space. To understand this, fix
the correlation parameter α and start with a low value of q. As seen in the figure, the
equilibrium is monotonic and the allocation is efficient. When q is increased, it becomes
more likely that there are a lot of high type bidders. This makes them bid more cautiously,
which in turn makes the auction more attractive to the low types (who perceive it less
likely that there are many high type bidders). At some point equilibrium becomes non-
monotonic, and the possibility of inefficient allocation sharply reduces the total surplus.
As q is increased towards 1, the uncertainty about the number of bidders vanishes and
thus the equilibrium becomes efficient again.

Lastly, we examine the effect of the number of bidders on the total surplus by refor-
mulating Π as a function of N < ∞. We show in Appendix A.4 that the probability of an
inefficient allocation given state θ and a fixed number of bidders can be written as:

Pr (low type wins |θ )
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Figure 4: Total Surplus Π in an all-pay auction with N bidders. Blue: q = 0.4. Yellow: q = 0.2. The other
parameters are α = 0.8 and vL = 0.5.

=
N

∑
n=0

(
N
n

)
(αθ)

n (1− αθ)
N−n N − n

N

[
(1− α0) (γ1)

1
N−1 − (1− α1) (γ0)

1
N−1

α1 (γ0)
1

N−1 − α0 (γ1)
1

N−1

]n

.

Accordingly, we can explicitly compute the ex-ante probability of misallocation as

Pr (low type wins) = q Pr (low type wins |θ1 ) + (1− q)Pr (low type wins |θ0 ) .

Figure 4 shows the total surplus as a function of N under two different prior probabilities,
q = 0.4 and q = 0.2 (the other parameters are α = 0.8 and vL = 0.5). We can see that in
both cases the surplus increases in N as expected. For small N, the total surplus is higher
when q = 0.4. This is simply because the probability that (at least) one high type exists in
the first place is substantially higher under that prior. However, the ranking is reversed
for large N. The reason can be found in Figure 3, which shows that the two different
priors lead to different equilibrium configurations for large N. With q = 0.2, equilibrium
remains monotonic for all N, while for q = 0.4, equilibrium is non-monotonic for large N
(in fact, the equilibrium is monotonic only for N = 2 but non-monotonic for all N ≥ 3
in this case). This means that there is a substantial surplus loss from inefficiency even for
large N, which appears in Figure 4 as a much weaker effect of the number of bidders on
total surplus.
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5.2. Mineral Rights

Here the setting is otherwise identical to the previous subsection, but we assume now
that v (θ, t) = v (θ) . The analysis is now somewhat easier since the solution to the system

qHxH (b) v(θ1) + (1− qH) xL (b) v(θ0) = b,

qLxH (b) v(θ1) + (1− qL) xL (b) v(θ0) = b

is easily seen to be

xH (b) =
b

v(θ1)
, xL (b) =

b
v(θ0)

.

Hence we see that a positive solution for winning probabilities resulting in indifference to
both types exists for all parameter values, as expected in the light of Proposition 2. This is
the key difference to the model with affiliated private values, where monotone equilibria
remain valid even for large N if p(θ0|ti=L )

p(θ0|ti=H )
< vH

vL
.

Obviously the economic consequences of the failure of monotonicity are less dramatic
in the model with common values, since the allocation is always efficient. At any rate, it
can be shown that all-pay auctions yield a high expected revenue to the seller, since all
the rents are dissipated in the non-monotonic equilibria.

We can again solve the symmetric equilibrium distributions for the limit N → ∞ as in
the affiliated private values case. Since the analysis is analogous to the previous case, we
omit the details here.

6. Conclusion

Correlation in signals causes problems for the existence of monotone equilibria in all-
pay auctions. This limits seriously the scope of the traditional analysis based on auction
theoretic arguments. In a simple model with two types of bidders, we show that the
non-existence of monotone equilibria has significant implications for the efficiency of al-
locations. We show that even if we let the number of players be arbitrarily large, the
allocation may be inefficient when the bidders have affiliated private values.

We hope our findings in this simple setting inspires further work in related models.
In addition to exploring richer informational models, further research should address
contests with multiple prizes as well as contests with less extreme outcome functions and
study efficiency and information aggregation in such environments.
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A. Appendix

A.1. Short Proofs

PROOF OF LEMMA 1: To see that there cannot be any atoms, assume to the contrary that
b is an atom for Fk

∗ . If all bidders have signal tj = k , then a bid of b ties for the highest bid
with a positive probability. Since we have assumed that v (θ, ti) > 0, bidding b + ε for ε

small enough is a profitable deviation.
Consider any nonnegative bid b /∈ supp[FL

∗ ] ∪ supp[FH
∗ ] such that there is a b′ > b

with b′ ∈ supp[FL
∗ ] ∪ supp[FH

∗ ]. Since the union of supports is a closed set, we can take
b′ to be the minimal such bid. By the first part of the proof, no distributions has an atom
at b′. Then the winning probabilities at b and b′ are identical, and thus b is a profitable
deviation from b′. This shows that the union of the supports is a connected set that
includes zero. �

PROOF OF PROPOSITION 2: To show that ψ(n) = VH(n)pH(n) − VL(n)pL(n) is single-
crossing, it is sufficient to establish the log-supermodularity of Vk(n)pk(n) in k and n. We
know that pk(n) is log-supermodular by the monotone likelihood ratio proerty. Hence
we need to show only that Vk(n) is log-supermodular. Since

Vk (n) = Eθ

[
v (θ, ti)

∣∣∣Yi = n, ti = k
]
,

and since we have assumed the log-supermodularity of both v (θ, ti) and p (θ, t) , the
result follows from the fact that log-supermodularity is preserved by integration and
multiplication (See Karlin and Rinott (1980)). �

PROOF OF PROPOSITION 2: The proof is by investigating the properties of the left- and
right-hand sides of the monotonicity condition (2) as the number of bidders N changes.
Rewriting (2), the equilibrium is monotonic if and only if:

VH (0)
VL (0)

≥ pL (0)
pH (0)

.

Part 1 - the mineral rights model: We show that the left-hand side VH(0)
VL(0)

converges to one
as N → ∞. To keep our notations simple, let t = (L, L, · · · , L) denote the vector of signal
realizations with ti = L for all i and t′ = (H, L, · · · , L) the vector with ti = L for all i 6= 1
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and t1 = H. Then the ratio can be written as

VH (0)
VL (0)

=
E[v (θ) |t′ ]
E[v (θ) |t ] =

∑M−1
m=0 p (θm |t′ ) v (θm)

∑M−1
m=0 p (θm |t ) v (θm)

,

where the posterior belief on θ given t can be calculated with the Bayes rule: for each
θ = θm,

p
(
θm
∣∣t′ ) =

q (θm) p (t′ |θm )

∑M−1
x=0 q (θx) p ( t′ |θx )

=
q (θm) αm (1− αm)

N−1

∑M−1
x=0 q (θx) αx (1− αx)

N−1 ,

and

p (θm |t ) =
q (θm) p (t |θm )

∑M−1
x=0 q (θx) p (t |θx )

=
q (θm) (1− αm)

N

∑M−1
x=0 q (θx) (1− αx)

N .

Since αm < αm+1 for every m, we see that both posterior beliefs assign a unit mass to
θ = θ0 as N → ∞. Consequently,

lim
N→∞

VH (0)
VL (0)

=
v(θ0)

v(θ0)
= 1.

We next investigate the right-hand side of (2), i.e. likelihood ratio pL(0)
pH(0) as N → ∞. We

can write this as

pL (0)
pH (0)

=
p (θ0 |ti = L ) (1− α0)

N−1 + ... + p (θM−1 |ti = L ) (1− αM−1)
N−1

p (θ0 |ti = H ) (1− α0)
N−1 + ... + p (θM−1 |ti = H ) (1− αM−1)

N−1 , (9)

where

p (θm |ti = L ) =
q (θm) (1− αm)

∑M−1
x=0 q (θx) (1− αx)

and

p (θm |ti = H ) =
q (θm) αm

∑M−1
x=0 q (θx) αx

are the posteriors of state θm after observing signal L and H, respectively, and (1− αm)
N−1

is the probability that all the other N − 1 players have a low signal, conditional on state.
Dividing both sides by (1− α0)

N−1, we have

pL (0)
pH (0)

=
p (θ0 |ti = L ) + p (θ1 |ti = L )

(
1−α1
1−α0

)N−1
+ ... + p (θM−1 |ti = L )

(
1−αM−1

1−α0

)N−1

p (θ0 |ti = H ) + p (θ1 |ti = H )
(

1−α1
1−α0

)N−1
+ ... + p (θM−1 |ti = H )

(
1−αM−1

1−α0

)N−1 .
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Since
(

1−αm
1−α0

)N−1
→ 0 for all m = 1, ..., M− 1 as N → ∞, we have

lim
N→∞

pL (0)
pH (0)

=
p (θ0 |ti = L )
p (θ0 |ti = H )

> 1. (10)

The claim in Part 1 of Proposition 2 is then immediate from Theorem 1.

Part 2 - the affiliated private values model: Now the left-hand side of (2) is simply

VH (0)
VL (0)

=
vH

vL
,

which is constant in N. The right-hand side of (2) is as in the mineral rights model, and
its limit as N → ∞ is given by (10) above. It remains to show that pL(0)

pH(0) is increasing in N.
To emphasize the dependence on N, write (9) as

pL (0; N)

pH (0; N)
=

M−1
∑

m=0
ξL (m)

M−1
∑

m=0
ξH (m)

,

where
ξt (m) = p (θm |ti = t ) (1− αm)

N−1 , t = L, H. (11)

Note that the ratio

ξL (m)

ξH (m)
=

p (θm |ti = L ) (1− αm)
N−1

p (θm |ti = H ) (1− αm)
N−1 =

p (θm |ti = L )
p (θm |ti = H )

=
(1− αm)

αm

∑M−1
x=0 q (θx) αx

∑M−1
x=0 q (θx) (1− αx)

is decreasing in m.
Next, consider the right-hand side of (2) for N + 1:

pL (0; N + 1)
pH (0; N + 1)

=
p (θ0 |ti = L ) (1− α0)

N + ... + p (θM−1 |ti = L ) (1− αM−1)
N

p (θ0 |ti = H ) (1− α0)
N + ... + p (θM−1 |ti = H ) (1− αM−1)

N .
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Using (11), this can be written as

pL (0; N + 1)
pH (0; N + 1)

=

M−1
∑

m=0
ξL (m) (1− αm)

M−1
∑

m=0
ξH (m) (1− αm)

.

Since N is arbitrary, the proof is done if we can show that

pL (0; N + 1)
pH (0; N + 1)

>
pL (0; N)

pH (0; N)
,

that is,
M−1
∑

m=0
ξL (m) (1− αm)

M−1
∑

m=0
ξH (m) (1− αm)

>

M−1
∑

m=0
ξL (m)

M−1
∑

m=0
ξH (m)

. (12)

The key here is that ξL(m)
ξH(m)

and (1− αm) are decreasing in m. The following lemma estab-
lishes (12) and hence finalizes the proof.

Lemma A.1. Let M be a positive integer and {δm}M−1
m=0 , {xm}M−1

m=0 , and {ym}M−1
m=0 denote se-

quences such that δm, xm, ym > 0 for all m = 0, ..., M − 1, and such that δm−1 > δm and
xm−1
ym−1

> xm
ym

for all m = 1, ..., M− 1. Then

M−1
∑

m=0
δmxm

M−1
∑

m=0
δmym

>

M−1
∑

m=0
xm

M−1
∑

m=0
ym

. (13)

Proof. In what follows, we will repeatedly use the fact that whenever A, B, a, b > 0 and
A/a > B/b, we have

Aq + B
aq + b

>
A + B
a + b

(14)

for q > 1 (this is easy to prove by differentiating the left-hand side with respect to q).
We prove Lemma A.1 using induction. First, (13) is clearly true if M = 2: If δ0 > δ1

and x0
y0

> x1
y1

, we have

δ0x0 + δ1x0

δ0y0 + δ1y0
=

δ0
δ1

x0 + x1
δ0
δ1

y0 + y1
>

x0 + x1

y0 + y1
,

where the inequality uses (14).
Fix an integer M > 2. As an induction hypothesis, suppose that (13) holds when the
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summation is taken from m = 1 to m = M− 1:

M−1
∑

m=1
δmxm

M−1
∑

m=1
δmym

>

M−1
∑

m=1
xm

M−1
∑

m=1
ym

,

whenever δm−1 > δm and xm−1
ym−1

> xm
ym

for all m = 0, ..., M− 2. Then, taking the summation
from m = 0, we can write

M−1
∑

m=0
δmxm

M−1
∑

m=0
δmym

=
δ0x0 + δ1

(
x1 +

δ2
δ1

x2 + ... + δM−1
δ1

xM−1

)
δ0y0 + δ1

(
y1 +

δ2
δ1

y2 + ... + δM−1
δ1

yM−1

) . (15)

Let
χ :=

x1 + x2 + ... + xM−1

x1 +
δ2
δ1

x2 + ... + δM−1
δ1

xM−1
. (16)

Since δk
δ1

< 1 for all k = 2, ..., M− 1, we have χ > 1. Using this defitition, we can write the
term in the parantesis in the nominator of (15) as:

x1 +
δ2

δ1
x2 + ... +

δM−1

δ1
xM−1 =

1
χ
(x1 + x2 + ... + xM−1) . (17)

Since
(

1, δ2
δ1

, δ3
δ1

, ..., δM−1
δ1

)
is a decreasing sequence, the induction hypothesis gives:

x1 +
δ2
δ1

x2 + ... + δM−1
δ1

xM−1

y1 +
δ2
δ1

y2 + ... + δM−1
δ1

yM−1
>

x1 + x2 + ... + xM−1

y1 + y2 + ... + yM−1
,

which we can rearrange as

y1 +
δ2

δ1
y2 + ... +

δM−1

δ1
yM−1 <

x1 +
δ2
δ1

x2 + ... + δM−1
δ1

xM−1

x1 + x2 + ... + xM−1
y1 + y2 + ... + yM−1

=
1
χ
(y1 + y2 + ... + yM−1) , (18)
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where the last equality uses (16). Plugging equality (17) and inequality (18) in (15) gives

M−1
∑

m=0
δmxm

M−1
∑

m=0
δmym

>
δ0x0 +

δ1
χ (x1 + x2 + ... + xM−1)

δ0y0 +
δ1
χ (y1 + y2 + ... + yM−1)

=

δ0χ
δ1

x0 + x1 + ... + xM−1
δ0χ
δ1

y0 + y1 + ... + yM−1
>

M−1
∑

m=0
xm

M−1
∑

m=0
ym

,

where the last inequality uses (14) and the facts that δ0χ
δ1

> 1 (since δ0 > δ1 and χ > 1) and

that x0
y0

> x1+...+xM−1
y1+...+yM−1

(since x0
y0

> xm
ym

for all m = 1, ..., M− 1).

A.2. Proof of Proposition 1

We shall prove this result through a series of lemmas. The first lemma shows that in any
equilibrium, the low-type bidder earns zero expected payoff, which results from the fact
that the function ψ takes a positive value at N − 1.

Lemma A.2. In any equilibrium F∗, 0 ∈ supp[FL
∗ ] and as a consequence the low type bidders

earn a zero expected rent.

Proof. Suppose to the contrary that BL ≡ min
(
supp[FL

∗ ]
)
> 0. Then by Lemma 1, it

follows that FH
∗ (BL) > 0, and that zero and BL must belong to supp[FH

∗ ]. Noticing that a
zero bid yields a payoff of zero, indifference between these bids gives:

u(BL, H|F∗) = 0 ⇒ BL = VH(N − 1)pH(N − 1)
(

FH
∗ (BL)

)N−1
,

where we used FL
∗ (BL) = 0 and the fact that by bidding BL the high type wins only if

there is no low-type bidder. Using the above alternative expression of BL, we compute
the expected payoff from bidding BL to the low type, to obtain

u(BL, L|F∗) = −BL + VL(N − 1)pL(N − 1)
(

FH
∗ (BL)

)N−1

= −ψ(N − 1)
(

FH
∗ (BL)

)N−1
,

which is strictly negative because ψ(N− 1) > 0 and FH
∗ (BL) > 0. Therefore, the low type

has a profitable deviation to bidding zero.
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The next lemma presents a sufficient condition for the existence of a monotone strategy
equilibrium.

Lemma A.3. If ψ(0) ≥ 0, then the all-pay auction has a unique symmetric BNE in monotone
strategies.

Proof. Since ψ(n) satisfies the single-crossing property, ψ(0) ≥ 0 implies ψ(n) > 0 for all
n = 1, · · · , N − 1. This implies that the effect of a marginal increase in b is increasing in
the signal:

∂

∂b
u(b, H|F∗)−

∂

∂b
u(b, L|F∗) =

∂

∂b

N−1

∑
n=0

ψ(n)
(

FH
∗ (b)

)n (
FL
∗ (b)

)N−n−1
> 0.

This implies that the bidder’s expected payoff function is supermodular in (b; ti), so any
symmetric equilibrium must be in monotone strategies: for every bL ∈ supp[FL

∗ ] and
bH ∈ supp[FH

∗ ], we must have bL ≤ bH.7 Since 0 ∈ supp[FL
∗ ] by the previous lemma,

and since the low type has a chance to win only if his opponents are all high types in
this monotonic equilibrium, we have supp[FL

∗ ] = [0, BL] where BL := max
(
supp[FL

∗ ]
)
=

BH := min
(
supp[FH

∗ ]
)
= VL (0) pL (0). Furthermore, we can characterize FL

∗ from the
indifference condition bewteen bidding zero and every b ∈ supp[FL

∗ ] to the low type:

b = VL (0) pL(0)
(

FL
∗ (b)

)N−1
,

for each b ∈ [0, VL (0) pL (0)]. As its right-hand side is strictly increasing in FL
∗ (b), the

equilibrium bid distribution function of the low type is unique.
For the high type bidders, indifference at all b ∈ supp[FH

∗ ] holds if and only if

N−1

∑
n=0

pH (n)VH (n)
(

FH
∗ (b)

)n
− b = VH (0) pH (0)−VL (0) pL (0) > 0,

where the expression on the right-hand side indicates the expected payoff of the high
type from bidding BH, namely the information rent. From the last equation, we see the

7As u(b, k|F∗) is supermodular, we have supp[FL
∗ ] ≤ supp[FH

∗ ] in the strong set order (See Milgrom
and Shannon (1994)). This has two implications on the equilibrium support. First, each support must
be a connected interval, for otherwise there exists a pair of bids bH < bL such that bL ∈ supp[FL

∗ ] and
bH ∈ supp[FH

∗ ]. Second, the supports must be disjoint, because the strict supermodularity implies that if
two bids, say b1 and b2 > b1, are indifferent to the low type, then b2 must be strictly preferred to b1 by the
high type.
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uniqueness of FH
∗ (b) for b ∈ supp[FH

∗ ], and using FH
∗ (BH) = 1, we get

BH := max
(

supp[FH
∗ ]
)
=

N−1

∑
n=0

pH (n)VH (n)−VL (0) pL (0) .

We examine next the other case of ψ(0) < 0. The next lemma shows that in this case
the high type bidders also earn zero rent in equilibrium. Together with Lemma A.2 and
A.3, the lemma tells us that there is full rent dissipation if and only if ψ(0) < 0.

Lemma A.4. If ψ(0) < 0, then 0 ∈ supp[FH
∗ ] in every equilibrium F∗, and as a result, the

expected payoff to the high type bidder is zero.

Proof. Suppose min
(
supp[FH

∗ ]
)
= BH > 0. Since the union of the supports is a connected

interval by Lemma 1, we must have FL
∗ (BH) > 0 in this case. Also, since bidding BH

gives the same payoff as bidding zero for the low type by Lemma A.2, we have BH =

VL(0)pL(0)
(

FL
∗ (BH)

)N−1. The expected payoff to high-type bidders from bidding BH is
then

u(BH, H|F∗) = −BH + VH(0)pH(0)
(

FL
∗ (BH)

)N−1
= ψ(0)

(
FL
∗ (BH)

)N−1
< 0.

Because every bidder has an option of bidding zero, any bids in the support must result
in a nonnegative expected payoff. As a result, we conclude that BH > 0

To fully characterize the equilibrium supports, we show in next lemma that each sup-
port is a connected interval and that supp[FL

∗ ] ⊂ supp[FH
∗ ].

Lemma A.5. Suppose ψ(0) < 0. In any symmetric BNE F∗, both supp[FL
∗ ] and supp[FH

∗ ] are
connected intervals.

Proof. Suppose to the contrary that there is an open interval (b′1, b′2) ⊂ [0, BL] such that
supp[FL

∗ ] ∩ (b′1, b′2) = ∅. Let (b1, b2) be the maximal (in the sense of set inclusion) open
interval such that

(b′1, b′2) ⊂ (b1, b2) and supp[FL
∗ ] ∩ (b1, b2) = ∅

Then b1 and b2 must belong to supp[FL
∗ ] ∩ supp[FH

∗ ], and FH
∗ (b2) > FH

∗ (b1) by Lemma 1.
Using Lemma A.2, we first obtain an alternative expression for b1 and b2:

b1 =
N−1

∑
n=0

VL(n)pL(n)
(

FL
∗ (b1)

)N−1−n (
FH
∗ (b1)

)n
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b2 =
N−1

∑
n=0

VL(n)pL(n)
(

FL
∗ (b1)

)N−1−n (
FH
∗ (b2)

)n
,

where we used FL
∗ (b1) = FL

∗ (b2) to derive the expression of b2. Also, it follows from
Lemma 1 and A.4 that b1 ∈ supp[FH

∗ ] and the expected payoff from making b1 must be
zero to the high type, namely

u(b1, H|F∗) = −b1 +
N−1

∑
n=0

VH(n)pH(n)
(

FL
∗ (b1)

)N−1−n (
FH
∗ (b1)

)n

=
N−1

∑
n=0

ψ(n)
(

FL
∗ (b1)

)N−1−n (
FH
∗ (b1)

)n
= 0.

Observe that the expression ψ(n)
(

FL
∗ (b1)

)N−1−n (FH
∗ (b1)

)n also satisfies the single-
crossing property in n. This implies that

u(b2, H|F∗) =
N−1

∑
n=0

ψ(n)
(

FL
∗ (b1)

)N−1−n (
FH
∗ (b2)

)n

=
N−1

∑
n=0

ψ(n)
(

FL
∗ (b1)

)N−1−n (
FH
∗ (b1)

)n
·
(

FH
∗ (b2)

FH
∗ (b1)

)n

> 0,

where the inequality comes from the (discrete version) Folk single-crossing lemma and

the fact that
(

FH
∗ (b2)

FH∗ (b1)

)n
is a strictly increasing function in n.8 Therefore, the high type is

strictly better off by bidding b2 rather than b1, which contradicts with the proposition that
the two bids are indifferent. A similar argument can be used to establish that supp[FH

∗ ] is
also connected.

The proof of existence and uniqueness for the case ψ(0) < 0 is based on following
lemma:

Lemma A.6. Define a function G : [0, 1]× [0, 1]→ < as

G (x, y) =
N−1

∑
n=0

g (n) xn yN−n−1,

where the function g : {0, 1, · · · , N − 1} → < is single-crossing, g (0) < 0, and ∑N−1
n=0 g (n) >

0. Then there exists a unique mapping ξ : (0, 1] → (0, 1) such that G (ξ (y) , y) = 0 for every

8For a discrete domain N, the single-crossing lemma states that if f : N → < satisfies the (strict) single-
crossing property and ∑ n∈N f (n) = 0, then ∑ n∈N f (n)g(n) ≥ (>) 0 for an (strictly) increasing function
g : N → <. Note that the given properties of f imply ∑ n≥k f (n) ≥ 0 for every k. Hence the lemma follows
from the fact that every increasing function can be approximated by ∑ i γi1{n≥ki}.
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y ∈ (0, 1]. Furthermore, the mapping ξ is continuous, strictly increasing, and

lim
y↓0

ξ (y) = 0.

Proof. We start with some properties of function G. First, G is clearly continuous, and
it is easy to check that for any x > 0 there is some δx > 0 such that G (x, y) > 0 for
y ∈ (0, δx), and for any y > 0 there is some δy > 0 such that G (x, y) < 0 for x ∈

(
0, δy

)
. In

particular, G (1, y) > 0 for every y ∈ (0, 1). This follows from the fact that g (n) is single
crossing in n, that ∑N−1

n=1 g (n) > 0, and that yN−n−1 is strictly increasing in n for y ∈ (0, 1).
Consequently, there exists a pair of (x, y) ∈ (0, 1)× (0, 1) at which G(x, y) = 0.

The following pairwise strict single-crossing property of G is the key to the Lemma: if
G (x, y) = 0 for some (x, y), then

G
(
x′, y

) { > 0 for x′ ∈ (x, 1)
< 0 for x′ ∈ (0, x)

(19)

G
(
x, y′

) { < 0 for y′ ∈ (y, 1)
> 0 for y′ ∈ (0, y)

(20)

To prove (19), fix x ∈ (0, 1) and y ∈ (0, 1) such that G (x, y) = ∑N−1
n=0 g (n) xn yN−n−1 = 0.

Then for any x′ 6= x, we have

G
(
x′, y

)
=

N−1

∑
n=0

g (n)
(
x′
)n yN−n−1 =

N−1

∑
n=0

g (n) xnyN−n−1
(

x′

x

)n

.

Since g (n) is assumed to satisfy the single-crossing property in n, so does g (n) yN−n−1xn

because both yN−n−1 and xn are positive (i.e., sign-preserving) functions of n. For x′ >

(<) x, the fraction
(

x′
x

)n
is strictly increasing (decreasing) in n, and thus we have

N−1

∑
n=0

g (n) xn yN−n−1
(

x′

x

)n

> (<) 0.

The proof for (20) is completely analogous so is omitted.
Using the properties of G just established, we can now prove the lemma. Fix y ∈ (0, 1].

Since G (x, y) < 0 for x sufficiently small and G (1, y) > 0, there is some x such that
G (x, y) = 0 by continuity of G. Because G(x, y) as a function of x satisfies the single-
crossing property by (19), this sign-changing point is unique, and hence defines a unique
ξ (y) for which G (ξ (y) , y) = 0.

To see that limy↓0 ξ (y) = 0, recall that for every x > 0, there exists a δx > 0 such that
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G (x, y) > 0 for all y ∈ (0, δx). This means that for all y < δx, we have ξ (y) < x. Since
x can be chosen arbitrarily low, it follows that limy↓0 ξ (y) = 0. Finally, continuity and
strict monotonicity of ξ (y) follow in a straightforward manner from the continuity and
pairwise strict single-crossing property of G(x, y). The proof is now complete.

The existence and the uniqueness of equilibrium can be established as follows.

Proof. By Lemmas A.2, A.4 and A.5, when ψ(0) < 0, in any equilibrium we must have
0 ∈ supp[FL

∗ ] ∩ supp[FH
∗ ] and both supports are connected intervals. Consequently, there

must be some interval
[
0, BL

]
where the two supports overlap. Note that every bid b ∈

[0, BL] must yield zero expected payoff (i.e., the same payoff) to both types. Below we
demonstrate that there exists only one pair of (FL

∗ , FH
∗ ) satisfying this property.

For each y ∈ (0, 1], we define ξ : (0, 1]→ (0, 1) as the solution to the equation:

N−1

∑
n=0

[
VH(n)pH(n)−VL(n)pL(n)︸ ︷︷ ︸

=ψ(n)

]
(ξ (y))n yN−n−1 = 0. (21)

As the function ψ(n) satisfies all the given properties for function g in Lemma A.6, we
know from that lemma that there exists a unique continuous and strictly increasing map-
ping satisfying (21) and limy→0 ξ(y) = 0.

Given this function ξ, we define BL as

N−1

∑
n=0

VH (n) pH (n) (ξ (1))n = BL.

For each b < BL, let FL
∗ (b) ∈ [0, 1) denote the unique value of y that solves the equation

N−1

∑
n=0

VH (n) pH (n) (ξ (y))n yN−n−1 = b.

As the expression on the left-hand side of the equation is strictly increasing in y and
b < BL, the solution FL

∗ (b) exists and is unique. Furthermore, it is easy to check that the
solution FL

∗ (b) retains all the necesary properties of a distribution function: it is strictly
increasing and continuous in b, FL

∗ (0) = 0, and FL
∗ (BL) = 1 (by definition of BL). Label

ξ(FL
∗ (b)) = FH

∗ (b). Then FH
∗ (b) is strictly increasing in b and FH

∗ (0) = 0. This process
characterizes the symmetric equilibrium on supp[FL

∗ ] ∩ supp[FH
∗ ].

To characterize the equilibrium on supp[FH
∗ ] ∩ {supp[FL

∗ ]}c, let

BH =
N−1

∑
n=1

VH (n) pH (n) .
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For each b ∈
(

BL, BH
)
, set FL

∗ (b) = 1 and define FH
∗ (b) as the solution to the equation

N−1

∑
n=0

VH (n) pH (n) xn = b.

Since the left-hand side is strictly increasing in x, FH
∗ (b) is uniquely determined.

A.3. Proof of Proposition 3

For this proof, we introduce some additional notation. Throughout the main body of the
proof we assume that v (θ, ti) depends non-trivially on θ. The other case, the affiliated
private values case, is easier and dealt with at the end. When v (θ, ti) depends on θ, it is
important to calculate the expected payoff conditional on winning the auction. If there
is an atom b̂ in the bid distribution, a bidder submitting b̂ ties with positive probability
for the highest bid, in which case the winner is determined by uniform rationing. Since
the probability of winning the rationing depends on the number of bidders that tie, we
must take into account the information that winning conveys about θ. Let T

(
k, θ; b̂

)
denote the event that the state is θ, and k (with 0 ≤ k ≤ N − 1) bidders amongst N − 1
bidders submit bid b̂ and N− 1− k bidders submit a bid strictly below b̂. Let P

(
k, θ; b̂

)
:=

Pr
{

T
(

k, θ; b̂
)}

. The first lemma towards the proof determines when a large number of

bidders that tie at b̂ is good news and when it is bad news about θ. Denote the probability
distribution on Θ conditional on k other bidders tying at b̂ by

pb̂ (θ |k ) :=
P
(

k, θ; b̂
)

∑
θ∈Θ

P
(

k, θ; b̂
) .

The lemma gives a simple criterion whether pb̂ (θ |k ) is first-order stochastically increas-

ing or decreasing in k. To express this condition, let Ft
∗

(
b̂−
)
= lim Ft

∗

(
b̂
)

for t ∈ {H, L}

so that the probability that type t bids at the atom is ∆t
(

b̂
)
= Ft

∗

(
b̂
)
− Ft
∗

(
b̂−
)

.

Lemma A.7. Probability distribution pb̂ (θ |k ) is

• strictly first-order stochastically increasing in k if(
∆H
(

b̂
)
− ∆L

(
b̂
))

FL
∗

(
b̂−
)
>
(

FH
∗

(
b̂−
)
− FL
∗

(
b̂−
))

∆L
(

b̂
)

.
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• strictly first-order stochastically decreasing in k if(
∆H
(

b̂
)
− ∆L

(
b̂
))

FL
∗

(
b̂−
)
<
(

FH
∗

(
b̂−
)
− FL
∗

(
b̂−
))

∆L
(

b̂
)

.

• independent of k if(
∆H
(

b̂
)
− ∆L

(
b̂
))

FL
∗

(
b̂−
)
=
(

FH
∗

(
b̂−
)
− FL
∗

(
b̂−
))

∆L
(

b̂
)

.

Proof. The proof is by noting that when P
(

k, θ; b̂
)

is log-supermodular (log-submodular)
in (k, θ), then pb̂ (θ |k ) is first-order stochastically increasing (decreasing) in k. We hence

investigate the properties of P
(

k, θ; b̂
)

:

P
(

k, θ; b̂
)

= p (θ)

(
N − 1

k

)(
αθ∆H

(
b̂
)
+ (1− αθ)∆L

(
b̂
))k

×
(

αθ FH
∗

(
b̂−
)
+ (1− αθ) FL

∗

(
b̂−
))N−k−1

.

Taking logarithms, and collecting into η (k) terms that do not depend on θ and into ν (θ)

terms that do not depend on θ, we have:

ln P
(

k, θ; b̂
)

= η (k) + ν (θ) + k[ln
(

αθ

(
∆H
(

b̂
)
− ∆L

(
b̂
))

+ ∆L
(

b̂
))

− ln
(

αθ

(
FH
∗

(
b̂−
)
− FL
∗

(
b̂−
))

+ FL
∗

(
b̂−
))

]

= η (k) + ν (θ) + k ln

 αθ

(
∆H
(

b̂
)
− ∆L

(
b̂
))

+ ∆L
(

b̂
)

αθ

(
FH
∗

(
b̂−
)
− FL
∗

(
b̂−
))

+ FL
∗

(
b̂−
)
 .

Since
αθ(∆H(b̂)−∆L(b̂))+∆L(b̂)

αθ(FH∗ (b̂−)−FL∗ (b̂−))+FL∗ (b̂−)
is strictly increasing (decreasing) in αθ if

(
∆H
(

b̂
)
− ∆L

(
b̂
))

FL
∗

(
b̂−
)
> (<)

(
FH
∗

(
b̂−
)
− FL
∗

(
b̂−
))

∆L
(

b̂
)

and since αθ is increasing in θ by assumption, the claim follows.

Since winning a rationing event is more likely when k is small, winning is good news
on θ whenever pb̂ (θ |k ) is stochastically decreasing in k, and vice versa. Following this
reasoning, the next lemma determines whether a small over- or underbidding from an
atom increases or decreases the payoff conditional on winning. Let Wti (b) denote the
expected value of the object conditional on winning with bid b and with signal ti. We
have:
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Lemma A.8. Let b̂ be atom of at least one of the bidding distributions. Then:

• If (
∆H
(

b̂
)
− ∆L

(
b̂
))

FL
∗

(
b̂−
)
>
(

FH
∗

(
b̂−
)
− FL
∗

(
b̂−
))

∆L
(

b̂
)

,

we have:
lim
b↓b̂

Wti (b) > Wti

(
b̂
)
> lim

b↑b̂
W (b) .

• If (
∆H
(

b̂
)
− ∆L

(
b̂
))

FL
∗

(
b̂−
)
<
(

FH
∗

(
b̂−
)
− FL
∗

(
b̂−
))

∆L
(

b̂
)

,

we have
lim
b↓b̂

Wti (b) < Wti

(
b̂
)
< lim

b↑b̂
W (b) .

• If (
∆H
(

b̂
)
− ∆L

(
b̂
))

FL
∗

(
b̂−
)
=
(

FH
∗

(
b̂−
)
− FL
∗

(
b̂−
))

∆L
(

b̂
)

,

we have
lim
b↓b̂

Wti (b) = Wti

(
b̂
)
= lim

b↑b̂
W (b) .

Proof. Denote by V̂b (k; ti) the expected value of the object conditional on k other bidders
bidding b̂:

V̂b (k; ti) = ∑
θ∈Θ

pb̂ (θ |k ) v (θ, ti) .

By bidding b = b̂, a bidder wins with probability 1
k+1 if there is a tie with k other bidders.

Therefore, conditional on winning, the probability of tying with k other bidders is given
by:

1
k+1 pb̂ (k)

N−1
∑

k=0

1
k+1 pb̂ (k)

, k = 0, ..., N − 1,

where pb̂ (k) is the marginal probability of tying with k others at bid b̂. Hence

Wti

(
b̂
)
=

N−1

∑
k=0

1
k+1 pb̂ (k)

N−1
∑

k=0

1
k+1 pb̂ (k)

V̂b (k; ti) .

By bidding slightly above b̂, a bidder wins against all bidders who pool at b̂, so that
winning conveys no additional information on k. Conditional on winning, the probability
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of k bidders bidding b̂ is hence given by

pb̂ (k) , k = 0, ..., N − 1

and therefore

lim
b↓b̂

Wti (b) =
N−1

∑
k=0

pb̂ (k) V̂b (k; ti) .

By bidding slightly below b̂, a bidder wins only if there is no bidder who bids b̂, and
hence

lim
b↑b̂

W (b) = V̂b (0; ti) .

Since the probability distribution
(

pb̂ (0) , ..., pb̂ (N − 1)
)

first-order stochastically

dominates (strictly) the distribution

 pb̂(0)
N−1
∑

k=0

1
k+1 pb̂(k)

, ...,
1
N pb̂(N−1)

N−1
∑

k=0

1
k+1 pb̂(k)

, which in turn strictly

dominates the distribution (1, 0, ..., 0), we have

lim
b↓b̂

Wti (b) > (<)Wti

(
b̂
)
> (<) lim

b↑b̂
W (b)

if V̂b (k; ti) is strictly increasing (decreasing) in k, and

lim
b↓b̂

Wti (b) = Wti

(
b̂
)
= lim

b↑b̂
W (b)

if V̂b (k; ti) does not depend on k. By Lemma A.7, V̂b (k; ti) is strictly increasing (decreas-
ing) in k if (

∆H
(

b̂
)
− ∆L

(
b̂
))

FL
∗

(
b̂−
)
> (<)

(
FH
∗

(
b̂−
)
− FL
∗

(
b̂−
))

∆L
(

b̂
)

and independent of k if the above holds as equality, and hence the result follows.

The next lemma shows that the lowest bid in the support of the bids is made by the
low-type bidders only and that it results in a zero payoff.

Lemma A.9. The lowest symmetric equilibrium bid is VL (0) and it is in the support of the low-
type bidders. High-type bidders do not have an atom at VL (0). As an implication, equilibrium
payoff is zero for the low type.

Proof. Suppose first that there is no mass point at the lowest bid b. Then the probability
of winning at b is zero and hence the expected payoff is also zero. It is not possible that
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b < VL (0), since a slight overbidding would lead to strictly positive payoffs. It is also not
possible that b is in the support of H but not L and that b < VH (N − 1) since winning
at any bid b + ε would imply that all the bidders are of type H and there would be a
profitable deviation for H. A bidder of type L never bids above VL (N − 1) < VH (N − 1)
in equilibrium. To see that it is not possible that b is in both supports, it is enough to
observe that the value of the object conditional on winning is strictly higher to H than to
L. Hence they cannot both earn zero expected profit.

The same argument shows that both players cannot have a mass point at b. The lowest
bid b cannot have a mass point for low-type bidders with b > VL (0) since that would lead
to an expected loss. Hence the claim of the lemma follows.

Lemma A.10. Mass points are possible only at VL (0) .

Proof. Suppose that there is a mass point at some b̂ > VL (0). If(
∆H
(

b̂
)
− ∆L

(
b̂
))

FL
∗

(
b̂−
)
>
(

FH
∗

(
b̂−
)
− FL
∗

(
b̂−
))

∆L
(

b̂
)

,

then by Lemma A.8 the value of the object conditional on winning jumps upwards by
bidding slightly above b̂. Since also the probability of winning increases by overbidding,
this is a strictly profitable deviation for any bidder bidding b̂.

If (
∆H
(

b̂
)
− ∆L

(
b̂
))

FL
∗

(
b̂−
)
<
(

FH
∗

(
b̂−
)
− FL
∗

(
b̂−
))

∆L
(

b̂
)

,

then ∆L
(

b̂
)

> 0 so that a low type must be bidding b̂ with a positive probability.
By Lemma A.9, the payoff for the low type is zero, and hence the value of the object
conditional on winning at b̂ must be zero for the low type. By Lemma A.8 a slight under-
bidding would increase the value conditional on winning above zero, which would then
be a profitable deviation for the low type bidder.

The only case left is if(
∆H
(

b̂
)
− ∆L

(
b̂
))

FL
∗

(
b̂−
)
=
(

FH
∗

(
b̂−
)
− FL
∗

(
b̂−
))

∆L
(

b̂
)

so that the expected value of the object does not depend on the number of tying bidders.
Since the low type has a zero expected profit, the high type makes a strictly positive ex-
pected profit at b̂. But overbidding increases discretely the probability of winning without
affecting the value conditional on winning, and so bidding b̂ + ε for ε small enough is a
profitable deviation for the high type.

Obviously there cannot be a mass point at some b̂ < VL (0) since overbidding would
be strictly optimal for both types.
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Lemma A.11. The support of the low-type bidders cannot have connected components of positive
length.

Proof. Suppose to the contrary that there is such a component and suppose that it is not
in the support of the high-type bidder. Then winning at a higher bid implies a lower
expected value and this is not compatible with the zero profit requirement in either a
first-price or a second price auction.

Consider next the possibility of overlapping connected components for the two types.
In the second-price auction, the bid in a symmetric equilibrium must be the value of the
object conditional on tying for the winning bid (otherwise a deviation either up or down
would be strictly optimal). This cannot be the same for the two types of bidders.

In the first-price auction, write the payoff of type tt who bids b as

Uti (b) =
N−1

∑
n=0

pti (n) FH
∗ (b)n FL

∗ (b)
N−n−1 (Vti (n)− b) .

If the bidding supports overlap, then we must have

∂Uti (b)
∂b

= 0

for ti = H, L. We can write the derivative of the payoff function as:

∂Uti (b)
∂b

=
N−1

∑
n=0

pti (n) FH
∗ (b)n FL

∗ (b)
N−n−1

×
((

n
f H
∗ (b)

FH
∗ (b)

+ (N − n− 1)
f L
∗ (b)

FL
∗ (b)

)
(Vti (n)− b)− 1

)
. (22)

As a first step towards showing that the supports cannot overlap, we show that there
cannot be an interval immediately above VL (0), where both types have a positive density.
Let b := VL (0), and note that by the previous Lemmas we have FL

∗ (b) > 0 and FH
∗ (b) = 0.

Then, evaluating (22) at b, we see that all of the terms with n ≥ 2 vanish, and we are left
with

∂Uti (b)
∂b

= pti (0) FL
∗ (b)

N−1
(
(N − 1)

f L
∗ (b)

FL
∗ (b)

(Vti (0)− b)− 1
)

+pti (1) FL
∗ (b)

N−2 f H
∗ (b) (Vti (1)− b)

= FL
∗ (b)

N−2 pti (0)
(
(N − 1) f L

∗ (b) (Vti (0)− b)− FL
∗ (b)

)
+FL
∗ (b)

N−2 pti (1) f H
∗ (b) (Vti (1)− b) .
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Noting that Vti (1) > Vti (0), VH (0) > VL (0) and pH(1)
pH(0) >

pL(1)
pL(0)

, we have

∂UL (b)
∂b

= 0 =⇒ ∂UH (b)
∂b

> 0,

so it is not possible to have a connected component (VL (0) , VL (0) + ε) where both types
are indifferent.

As a second step, we will rule out overlapping components strictly above VL (0). By
usual arguments, the union of the two supports must be a connected set. Therefore, if the
low type is active for b′ > VL (0), there must be a region between VL (0) and b′, where
only the high type has a positive density. We will now show that if the high type has a
positive density, the value of the low type is strictly decreasing. Since we already know
that UL (VL (0)) = 0, this rules out the possibility that the low type is active for any
b′ > VL (0).

Suppose that only the high type has a positive density at b, i.e., f H
∗ (b) > 0 and f L

∗ (b) =
0. Then

∂Uti (b)
∂b

=
N−1

∑
n=0

pti (n) FH
∗ (b)n FL

∗ (b)
N−n−1

(
n f H
∗ (b)

FH
∗ (b)

(Vti (n)− b)− 1
)

.

If the high-type has a positive density, we must have

∂UH (b)
∂b

=
N−1

∑
n=0

pH (n) FH
∗ (b)n FL

∗ (b)
N−n−1

(
n f H
∗ (b)

FH
∗ (b)

(VH (n)− b)− 1
)
= 0.

Noting that n f H
∗ (b)

FH∗ (b)
(VH (n)− b) is increasing in n, we see that

pH (n) FH
∗ (b)n FL

∗ (b)
N−n−1

(
n f H
∗ (b)

FH
∗ (b)

(VH (n)− b)− 1
)

is single crossing in n. Since pL(n)
pH(n) is strictly decreasing in n, the single-crossing lemma

implies that

N−1

∑
n=0

pL (n)
pH (n)

· pH (n) FH
∗ (b)n FL

∗ (b)
N−n−1

(
n f H
∗ (b)

FH
∗ (b)

(VH (n)− b)− 1
)
< 0.

Moreover, since VL (n) < VH (n) for all n, this implies that

∂UH (b)
∂b

=
N−1

∑
n=0

pL (n) FH
∗ (b)n FL

∗ (b)
N−n−1

(
n f H
∗ (b)

FH
∗ (b)

(VL (n)− b)− 1
)
< 0,

40



and hence the value of the low type must be negative for any b > VL (0).

Lemma A.12. In a symmetric equilibrium of the standard second-price auction, low-type
bidders all bid VL (0) and the high-type bidders randomize using an atomless distribution on
[VH (0) , E[v (θ, H) |t = H, n ≥ 1 ]. In a symmetric equilibrium of the first-price auction, low-
type bidders all bid VL (0) and the high-type bidders randomize using an atomless distribution on
[VL (0) , E[v (θ, H) |t = H ]− pH (0) (VH(0)−VL (0))].

Proof. Lemmas A.7 - A.11 imply that the low bidders must have a degenerate distribution
at the lowest point and that the high-type bidders must play according to an atomless
mixed strategy. The support of the high-type bidders distribution is uniquely pinned
down by the constant profit condition in both cases.

Lemma A.12 establishes the uniqueness of a symmetric equilibrium under the as-
sumption, maintained up to this point, that v (θ, t) depends non-trivially on θ. The case
of affiliated private values, where v (θ, t) = v (t), is easier since no pay-off relevant infor-
mation can be obtained by the outcome of a rationing event at a mass point. Lemma A.8
does not hold since with private valuations we must have

lim
b↓b̂

Wti (b) = Wti

(
b̂
)
= lim

b↑b̂
W (b)

for any atom b̂. This affects the statement of Lemma A.10, according to which no atoms
above VL (0) can exist. It is easy to show that with private valuations, the unique equi-
librium in the case of second-price auction involves two atoms: both types bid their own
value with probability 1. The nature of the unique equilibrium in the first-price auction is
unchanged.

A.4. Probability of misallocation for finite number of bidders

Rewrite equation (6) as:[
α1FH
∗ (b) + (1− α1) FL

∗ (b)
]N−1

= bγ1,[
α0FH
∗ (b) + (1− α0) FL

∗ (b)
]N−1

= bγ0,

or

α1FH
∗ (b) + (1− α1) FL

∗ (b) = (bγ1)
1/(N−1) ,

α0FH
∗ (b) + (1− α0) FL

∗ (b) = (bγ0)
1/(N−1) .
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Solving for the distribution functions, we have

FH
∗ (b) = b

1
N−1

[
(1− α0) (γ1)

1
N−1 − (1− α1) (γ0)

1
N−1

α1 − α0

]
= Γ̂Hb

1
N−1

FL
∗ (b) = b

1
N−1

[
α1 (γ0)

1
N−1 − α0 (γ1)

1
N−1

α1 − α0

]
= Γ̂Lb

1
N−1 ,

where Γ̂H and Γ̂L represent the bracketed terms. By setting FL
∗
(

BL
)
= 1, we can find the

upper bound of the overlapping support BL: BL = (Γ̂L)
−N+1.

Let n = {0, 1, · · · , N} denote the realized number of high type bidders. Then for each
n, we can derive the distribution function of the highest bid among high types and among
low types as follows:

ΓH (b; n) = Pr (highest bid of type H below b |n ) =
(

FH
∗ (b)

)n
=

(
Γ̂H

)n
b

n
N−1

and

ΓL (b; n) = Pr (highest bid of type L below b |n ) =
(

FL
∗ (b)

)N−n
=

(
Γ̂L

)N−n
b

N−n
N−1 .

Then we can compute the probability of inefficient allocation, conditional on n, as

Pr (low type wins |n ) =
∫ BL

0
Γ′L (b; n) ΓH (b; n) db

=
∫ BL

0

N − n
N − 1

b−
n−1
N−1

(
Γ̂L

)N−n
· b

n
N−1

(
Γ̂H

)n
db

=
N − n

N

(
Γ̂L

)N−n (
Γ̂H

)n (
BL
) N

N−1

=
N − n

N

(
Γ̂H/Γ̂L

)n
,

where the bottom line follows from BL = (Γ̂L)
−N+1.The probability of misallocation con-

ditional on state is then

Pr (low type wins |θ ) =
N

∑
n=0

(
N
n

)
(αθ)

n (1− αθ)
N−n N − n

N

(
Γ̂H

Γ̂L

)n

. �
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